Устройства хранения информации
1. Внутренние хранители информации
1.1. Оперативная память
Оперативная память (RAM – random access memory, ОЗУ) – устройство, предназначенное для хранения обрабатываемой информации (данных) и программ, управляющих процессом обработки информации. Конструктивно представляет собой набор микросхем, размещенных на одной небольшой плате (модуль, планка). Модуль (модули) оперативной памяти вставляется в соответствующий разъем материнской платы, позволяя таким образом связываться с другими устройствами ПК.
Для того чтобы какая-либо программа начала свое выполнение, она должна быть загружена в оперативную память. Оперативная память является энергозависимой, т.е. хранит информацию, пока компьютер включен (подано питание на модуль оперативной памяти). В оперативную память программа и данные для ее работы попадают из других устройств, загружаются из внешней памяти, энергонезависимых устройств памяти (жесткий диск, компакт-диск и т.д.). Таким образом
Оперативная память хранит загруженную, выполняющуюся сей момент программу и данные, которые с ее помощью обрабатываются. Если после обработки предполагается дальнейшее использование данных (это может быть и текстовой документ, и графическое изображение, и табличные данные, и звук), то копию этого документа из оперативной памяти можно записать на одном из устройств внешней памяти (например, на жестком диске), создав на жестком диске файл, хранящий документ.
Как технически осуществить процесс загрузки нужной программы в оперативную память? Для этого нужна программа-посредник, посредник между “железом” и человеком. Такой программой является операционная система.
Операционная система (ОС) тоже должна быть загружена в оперативную память, но ОС загружается автоматически при включении компьютера (обычно с жесткого диска, но не обязательно с него). После ее загрузки можно использовать инструменты, предназначенные для загрузки других программ (например, в MS Windows – ярлыки программ или программа для работы с файлами Проводник).
Основными характеристиками памяти являются объем, время доступа и плотность записи информации. Объем памяти определяется максимальным количеством информации, которая может быть помещена в эту память, и выражается в килобайтах, мегабайтах, гигабайтах. Время доступа к памяти (секунды) представляет собой минимальное время, достаточное для размещения в памяти единицы информации. Плотность записи информации (бит/см2) представляет собой количество информации, записанной на единице поверхности носителя. Важнейшей характеристикой компьютера в целом является его производительность, т.е. возможность обрабатывать большие объемы информации. Производительность ПК во многом определяется быстродействием процессора, а также объемом оперативной памяти и скоростью доступа к ней.
Оперативная память изготавливается в виде небольших печатных плат с рядами контактов, на которых размещаются интегральные схемы памяти (модули памяти). Модули памяти различаются по размеру и количеству контактов (SIMM или DIMM), по быстродействию, по объему.
Важнейшей характеристикой модулей оперативной памяти является быстродействие – частота, с которой считывается или записывается информация в ячейки памяти. Современные модули памяти имеют частоту 133 МГц и выше.
Оперативная память состоит из огромного количества ячеек (десятки миллионов), в каждой из которых хранится определенная информация. От объема оперативной памяти зависит, сможет ли компьютер работать с той или иной программой. При недостаточном количестве памяти программы либо совсем не будут работать, либо будут работать медленно. Типичный современный компьютер имеет 256 или 512 Мб оперативной памяти.
Оперативная память энергозависима – при выключении электропитания информация, помещенная в оперативную память, исчезает безвозвратно (если она не была сохранена на какой-либо носитель информации).
1.2. Кэш-память
Как уже было сказано, количество тактов в секунду – это лишь один показатель, определяющий скорость процессора. Вторым элементом является архитектура микропроцессора и компьютерной системы в целом. В последние годы было сделано важное улучшение: процессор начали оснащать кэш-памятью. Кэш-память (с английского cash – запас)– устройство, имеющее очень короткое время доступа к данным. Встроенная в микросхему сверхбыстрая память. В ней хранятся наиболее часто используемые данные из оперативной памяти. Обычно имеет размер 256 или 512 Кбайт, в мощных компьютерах до 1 более Гб).
Наличие такой памяти позволяло микропроцессору всегда хранить инструкции или данные «под рукой», а сложные алгоритмы предугадывали, какая информация понадобится процессору перед тем, как он вызывал и извлекал ее. При этом, когда информация становилась необходимой, процессору не нужно было тратить циклы, ожидая выборки инструкции, передаче ее по системной шине в память, а затем возвращения. В усовершенствованные процессоры, включая почти все современные модели, добавлен кэш второго уровня L2, занимающий промежуточное положение между кэш-памятью (кэшем первого уровня) процессора и памятью ОЗУ.
Специальные программно-аппаратные средства обеспечивают опережающее копирование данных из оперативной памяти в кэш и обратное копирование данных по окончании их обработки. Обработка данных в кэш-памяти производится быстрее, что приводит к увеличению производительности ПК. Непосредственного доступа из программы в кэш-память нет.
Для управления всей кэш-памятью и ее использования применяются сложные алгоритмы. Алгоритм предсказания ветвлений предугадывает следующее направление для выборки инструкции перед тем, как она будет вызвана. Алгоритм спекулятивного выполнения идет на шаг впереди для выполнения предсказанной последовательности операций еще перед тем, как процессор запросит ее. Алгоритм нестандартного завершения работает с инструкциями нелогичным, но более эффективным способом.
1.3. CMOS-память
CMOS-память (изготовленная по технологии CMOS – complementary metal – oxide semiconductor) предназначена для длительного хранения данных о конфигурации и настройке компьютера (дата, время, пароль), в том числе и когда питание компьютера выключено. Для этого используют специальные электронные схемы со средним быстродействием, но очень малым энергопотреблением, питаемые от специального аккумулятора, установленного на материнской плате. Это полупостоянная память.
Данные записываются и считываются под управлением команд, содержащихся в другом виде памяти – BIOS.
BIOS – постоянная память, т.е. память, хранящая информацию при отключенном питании теоретически сколь угодно долго, в которую данные занесены при ее изготовлении. Такой вид памяти называется ROM (read only memory). BIOS (Basic Input-Output System) – базовая система ввода-вывода – содержит наборы групп команд, называемых функциями, для непосредственного управления различными устройствами ПК, их тестирования при включении питания и осуществления начального этапа загрузки операционной системы компьютера. В BIOS содержится также программа настройки конфигурации компьютера – SETUP. Она позволяет установить некоторые характеристики устройств ПК. BIOS как система непосредственно ориентирована на конкретную аппаратную реализацию компьютера и может быть различной даже в однотипных компьютерах.
2. Внешние хранители информации
2.1. Жесткий магнитный диск
Жесткий магнитный диск (винчестер, HDD – Hard Disk Drive) – постоянная память, предназначена для долговременного хранения всей имеющейся в компьютере информации. Операционная система, постоянно используемые программы загружаются с жесткого диска, на нем хранится большинство документов.
Накопитель на жестком диске (HDD) является одним из ключевых компонентов современного ПК. От него напрямую зависит производительность и надежность системы. Технологии изготовления жестких дисков совершенствуются, размеры программ увеличиваются, данные на компьютере накапливаются…
Устройство жестких дисков (рис.1).
Рис. 1. Устройство жесткого магнитного диска
Жесткий магнитный диск (он же винчестер) состоит из гермоблока и платы электроники. В гермоблоке размещены все механические части, на плате – вся управляющая электроника, за исключением предусилителя (предварительного усилителя), размещенного внутри гермоблока в непосредственной близости от считывающих головок.
В гермоблоке установлен шпиндель с одним или несколькими дисками. Диски изготовлены из алюминия (иногда – из керамики или стекла) и покрыты тонким слоем окиси хрома. В настоящее время объем информации, хранимой на одном диске, может достигать 100 Гбайт.
Сбоку шпинделя находится поворотный позиционер (подобен башенному крану со стрелой-коромыслом). С одной стороны коромысла расположены обращенные к дискам легкие магнитные головки, а с другой – короткий хвостовик с обмоткой электромагнитного привода. При поворотах коромысла позиционера головки совершают движение по дуге между центром и периферией дисков.
Под дисками расположен двигатель, который вращает их с большой скоростью. При вращении дисков создается сильный поток воздуха, который циркулирует по периметру гермоблока. Пыль губительна для поверхности дисков, поэтому блок герметизирован, воздух в нем постоянно очищается специальным фильтром. Для выравнивания давления воздуха внутри и снаружи в крышках гермоблоков делаются небольшие окна, заклеенные тонкой пленкой. В ряде моделей окно закрывается воздухопроницаемым фильтром.
Обмотку позиционера окружает статор, представляющий собой постоянный магнит. При подаче в обмотку тока определенной величины и полярности коромысло начинает поворачиваться в соответствующую сторону с соответствующим ускорением. Динамически изменяя ток в обмотке, можно устанавливать позиционер в любое положение.
Практически все современные жесткие диски выпускаются по технологии, использующей магниторезистивный эффект. Благодаря этому в последний год емкость дисков растет быстрыми темпами за счет повышения плотности записи информации.
Появление в 1999 г. изобретенных фирмой IBM головок с магниторезистивным эффектом (GMR – Giant Magnetic Resistance) привело к повышению плотности записи до 6,4 Гбайт на одну пластину в уже представленных на рынке изделиях.
Основные параметры жесткого диска:
Емкость – винчестер имеет объем от 40 Гб до 200 Гб.
Скорость чтения данных. Средний сегодняшний показатель – около 8 Мбайт/с.
Среднее время доступа. Измеряется в миллисекундах и обозначает то время, которое необходимо диску для доступа к любому выбранному вами участку. Средний показатель – 9 мс.
Скорость вращения диска. Показатель, напрямую связанный со скоростью доступа и скоростью чтения данных. Скорость вращения жесткого диска в основном влияет на сокращение среднего времени доступа (поиска). Повышение общей производительности особенно заметно при выборке большого числа файлов.
Размер кэш-памяти – быстрой буферной памяти небольшого объема, в которую компьютер помещает наиболее часто используемые данные. У винчестера есть своя кэш-память размером до 8 Мбайт.
Фирма-производитель. Освоить современные технологии могут только крупнейшие производители, потому что организация изготовления сложнейших головок, пластин, контроллеров требует крупных финансовых и интеллектуальных затрат. В настоящее время жесткие диски производят семь компаний: Fujitsu, IBM-Hitachi, Maxtor, Samsung, Seagate, Toshiba и Western Digital. При этом каждая модель одного производителя имеет свои, только ей присущие особенности.
2.2. Компактные твердотельные носители
Проблема емких и надежных накопителей, являющихся внешними для компьютерной системы, стоит сегодня достаточно остро.
2.2.1. Стримеры
Классическим способом резервного копирования является применение стримеров – устройств записи на магнитную ленту. Однако возможности этой технологии, как по емкости, так и по скорости, сильно ограничены физическими свойствами носителя. Стример по принципу действия очень похож на кассетный магнитофон. Данные записываются на магнитную ленту, протягиваемую мимо головок. Недостатком стримера является слишком большое время последовательного доступа к данным при чтении. Емкость стримера достигает нескольких Гбайт, что меньше емкости современных винчестеров, а время доступа во много раз больше.
2.2.2. Гибкие диски
Использование 3,5′ (1,44 Мбайт) гибких дисков уходит в прошлое. Бывают двух типов и обеспечивают хранение информации на дискетах одного из двух форматов: 5,25′ или 3,5′. Дискеты формата 5,25′ в настоящее время практически не встречаются (максимальная емкость 1,2 Мб). Для дискет формата 3,5′ максимальная емкость составляет 2,88 Мб, самый распространенный формат емкости для них – 1,44 Мб. Гибкие магнитные диски помещаются в пластмассовый корпус. В центре дискеты имеется приспособление для захвата и обеспечения вращения диска внутри пластмассового корпуса. Дискета вставляется в дисковод, который вращается с постоянной угловой скоростью.
Все дискеты перед употреблением форматируются – на них наносится служебная информация, обе поверхности дискеты разбиваются на концентрические окружности – дорожки, которые в свою очередь делятся на сектора. Одноименные сектора обеих поверхностей образуют кластеры. Магнитные головки примыкают к обеим поверхностям и при вращении диска проходят мимо всех кластеров дорожки. Перемещение головок по радиусу с помощью шагового двигателя обеспечивает доступ к каждой дорожке. Запись/чтение осуществляется целым числом кластеров, обычно под управлением операционной системы. Однако в особых случаях можно организовать запись/чтение и в обход операционной системы, используя напрямую функции BIOS. В целях сохранения информации гибкие магнитные диски необходимо предохранять от воздействия сильных магнитных полей и нагревания, так как такие воздействия могут привести к размагничиванию носителя и потере информации.
2.2.3. CD-ROM и CD-RW
Рис. 3. CD-ROM
Вторым по степени распространенности накопителем можно назвать дисководы CD-ROM и CD-RW (Compact Disc-ReWritable).
В качестве носителя программ и данных диски CD-ROM останутся актуальными и в обозримом будущем, поэтому, несмотря на появление записывающих устройств, продолжается совершенствование и классических (только с функцией чтения) приводов CD-ROM – они становятся все более быстродействующими и дешёвыми. Устройства с однократной (CD-R) и многократной (CD-RW) записью, хотя и получают все большее распространение, пока не вытесняют, а скорее дополняют обычные проводы CD-ROM.
На диске CD-ROM промышленным способом записывается информация, и произвести ее повторную запись невозможно. Наибольшее распространение получили 5-дюймовые диски CD-ROM емкостью 670 Мбайт. По своим характеристикам они полностью идентичны обычным музыкальным компакт-дискам. Данные на диске записываются в виде спирали (в отличие от винчестера, данные на котором располагаются в виде концентрических окружностей). С точки зрения физики лазерный луч определяет цифровую последовательность единиц и нулей, записанных на CD, no форме микроскопических ямок (пит, pit) на его спирали.
Лазерные накопители CD-R.
Цены на средства записи компакт-дисков снизились, а это значит, что теперь даже частное лицо может попытаться выпустить небольшим тиражом свой диск.
Чтобы записать один-единственный компакт-диск, десять лет назад потребовались бы целая комната аппаратуры, два квалифицированных специалиста и восемь часов работы. Сегодня, имея компьютер с записывающим дисководом CD-R, можно сделать диск менее чем за час. Аббревиатурой CD-R (CD-Recordable) обозначена технология однократной оптической записи, которую можно использовать для архивирования данных, создания прототипов дисков для серийного производства и для мелкосерийного выпуска изданий на компакт-дисках, записи аудио и видео. На CD-R, в частности, основана система Photo CD фирмы Kodak.
CD-RW — накопители на перезаписываемых CD-дисках
Более десяти лет назад на компьютерном рынке появились накопители, которые дают возможность работать с перезаписываемыми CD-RW (CD-ReWritable), известными также как CDE . Такие устройства позволяют заносить информацию на существующие недорогие компакт-диски с возможностью дозаписи (CD-R ценой около 0,3 $), а при использовании перезаписываемых CD-RW-дисков могут стирать старые данные и записывать вместо них новые. Емкость носителя CD-RW (стоимость около .6 $) составляют 650 Мбайт и равна емкости дисков CD-ROM и CD-R.
CD-RW-привод автоматически распознает тип загружаемого носителя. CD-R-диски совместимы с более чем 600 млн. различных CD-ROM-носителей и плейеров звуковых компакт-дисков, существующих сегодня в мире; они могут работать и в некоторых DVD-ROM-приводах (не во всех).
Диски CD-RW считываются только на современных универсальных CD-ROM-устройствах и DVD-ROM, рассчитанных на работу с различными носителями (удовлетворяющих спецификации MultiRead).
С помощью специальных программ на чистый CD возможна одноразовая запись информации в домашних условиях. Запись производится мощным лазером, под воздействием которого материал CD частично теряет прозрачность. По внешнему виду как сами дисководы, так и диски для CD-RW практически не отличаются от CD-ROM, DVD-ROM. Однако из-за меньшей прозрачности CD требуют лучшего отражающего покрытия. В целях сохранения информации CD необходимо предохранять от механических повреждений (царапин, сколов), а также от загрязнения. Накопители управляются контроллерами, размещенными на системной плате либо на мультикарте.
2.2.4. Накопители DVD-ROM, DVD-R, DVD-RW, DVD+RW и др.
В конце 1997-го — начале 1998 года на рынке стали появляться диски и приводы DVD. Этот стандарт был создан с расчетом на то, чтобы заменить разные носители сразу в нескольких областях – в индустрии видео, в сфере информационных технологий, в звуковых записях и даже, возможно в индустрии игровых картриджей. По замыслу разработчиков, это должен быть некий “универсальный” носитель, необычайно вместительный и надежный.
DVD (Digital Versatile Disk, ранее Digital Video Disk), т. е. многоцелевой цифровой диск – тип компакт-дисков, хранящий от 4,7 до 17 Гбайт информации, что вполне достаточно для полнометражного фильма. Почти все уже уверены, что DVD скоро вытеснят как CD-ROM, так и обычные VHS-видеокассеты. Такой объем способен удовлетворить любого производителя компьютерных игр и энциклопедий, для выпуска которых обычно требовалось несколько CD-ROM, вызывая неудобства у пользователя.
По физическим размерам же диски CD и DVD абсолютно одинаковы – DVD лишь немного тоньше. Естественно, так же как и CD-диски, DVD производится в двух форм-факторах: 12 см (4,7 дюйма) и 8 см (3,1 дюйма). Наиболее распространенным, как и в случае с CD, скорее всего, будет форм-фактор 12 см – ведь именно на него рассчитано большинство дисководов и DVD-плееров.
В чем же заключаются различия между DVD и CD? В первую очередь у DVD-дисков меньший диаметр углублений, на дорожке они расположены с меньшим “шагом” и самих дорожек на диске гораздо больше. Использование насечек меньшего размера стало возможным благодаря применению лазера с меньшей длиной волны, посылающего более “плотный” луч. В то время как лазер в обычном устройства CD-ROM имеет длину волны 780 нанометров, устройства DVD используют лазер с длиной волны 650 или 635 нм, что позволяет покрывать лучом в два раз больше насечек на одной дорожке и в два раза больше дорожек. Кроме того, поверхность диска, отведенная для хранения данных, немного больше, чем у CD-ROM; DVD также предусматривает другой формат секторов и более надежный код коррекции ошибок. Все эти нововведения позволили достичь примерно в семь раз большей емкости дисков DVD, чем традиционных CD.
Но семикратный прирост емкости диска – это далеко не предел. Пожалуй, самое интересное в спецификациях DVD — это возможность создания двухсторонних и двухслойных дисков.
Двухсторонний диск делается просто: так как толщина диска DVD может составлять лишь 0,6 мм (половина толщины обычного CD-ROM), появляется возможность соединить два диска тыльными сторонами и получить двухсторонний DVD. Правда, вам придется вручную переворачивать его, но с развитием технологий DVD появятся приводы, способные читать обе стороны без вмешательства пользователя (вспомним те же самые трехдюймовые дисководы для floppy-дисков).
Технология создания двухслойных дисков чуть более сложна: данные записываются в двух слоях – нижнем и полупрозрачном верхнем. Работая на одной частоте лазер считывает данные с полупрозрачного слоя, работая на другой – получает данные “со дна”.
Всевозможные комбинации всех вышеперечисленных технологий породили довольно много типов дисков DVD.
Существуют односторонние (SS — Single Sided) и двухсторонние DVD (DS), однослойные (SL — Single Layer) и двухслойные (DL).
Стоит отметить, что вместимость двухслойных DVD-дисков не в два раза больше, чем у однослойных, как следовало бы ожидать, а немного меньше: чтобы минимизировать помехи, возникающие при прохождении луча лазера через внешний слой, минимальный размер углублений на дорожках был повышен с 0,4 мм до 0,44 мм. Кстати, в результате немного повысилась скорость считывания информации с таких дисков.
С пользовательской точки зрения программы и данные записаны на диске в формате DVD-ROM аналогично традиционному диску CD-ROM. Для считывания таких дисков в компьютере должен быть установлен накопитель DVD-ROM, который внешне похож на привод CD-ROM, использует те же интерфейсы SCSI-2 или IDE (ATAPI) и точно так же устанавливается. Причем DVD-ROM может читать и старые CD-ROM, а также воспроизводить звуковые компакт-диски. Однако не все приводы DVD-ROM одинаковы, и, хотя технология DVD разработана сравнительно недавно, в продаже проходили уже несколько поколений накопителей DVD-ROM.
Дисководы первого поколения не были рассчитаны на чтение записываемых компакт-дисков CD-R и CD-RW (и, кстати, плохо читали некачественные диски CD-ROM), но дисководы DVD последующих поколений корректно работают уже со всеми форматами. В общем же следует отметить, что скорость передачи данных у дисководов DVD-ROM первого поколения приблизительно девятикратная (по отношению к однократной скорости чтения CD-ROM), однако скорость вращения дисков у первых приводов DVD-ROM была только в три раза выше, чем у CD, так что диски CD-ROM они читали только на трехкратной скорости. Основная масса современных приводов DVD-ROM читает диски CD-ROM уже на 40-кратных скоростях. Поэтому можно с большой уверенностью сказать – смена приводами DVD-ROM дисководов CD-ROM в ближайшем будущем несомненно произойдет. Некоторые изготовители дисководов CD-ROM уже планируют прекратить их выпуск в пользу приводов DVD-ROM.
Все DVD-плееры и компьютерные приводы должны читать двухслойные диски – этого требует спецификация. Все плееры и дисководы также проигрывают двусторонние диски, но, как правило, их надо переворачивать, так как двухголовочных моделей, которые могли бы воспроизводить обе стороны без переворачивания, пока нет, хотя практически все диски ранних выпусков – двусторонние, а двухслойная продукция распространяется только в последнее время.
Спецификаций DVD-ROM рассматривает диски и технологию DVD в качестве средства хранения компьютерных данных, обладающего громадной емкостью. Спецификация DVD-Video, вокруг которой ломалось столько копий, предусматривает лишь запись полнометражных кинопрограмм с высоким качеством изображения, многоканальным звуком и интернациональными настройками. Спецификация DVD-Audio рассматривает стандарт записи лишь звука, предполагая, правда, значительно более высокое качество, многоканальность и возможность поместить на том же диске не только 74 мин. музыки, но и разнообразную сопутствующую информацию. Спецификации DVD-R и DVD-RAM определяют физические параметры записываемых и перезаписываемых дисков DVD.
Как уже отмечалось выше, на дисках DVD могут храниться и компьютерные данные.
Примерно половина ведущих разработчиков программ в индустрии электронных развлечений ориентируется на DVD.
Становится ясным, что стремительное понижение цен на DVD-устройства может привести к вытеснению CD-приводов уже в ближайшее время даже при условии использования старых носителей.
DVD-ROM – относительно дешевы, но могут только читать диски. С пишущими приводами проблем больше, т.к. существует проблема войны стандартов на способы записи (в настоящее время эти проблемы успешно решаются).
Для самостоятельной записи DVD-дисков в настоящее время имеются две разновидности: DVD-R – однократно записываемый диск (аналог CD-R) и DVD-RW для многократной, стираемой записи (аналог CD-RW).
В DVD-R применяется органическая полимерная технология, подобная CD-R, и этот формат совместим почти со всеми современными дисководами DVD. Причем технология постоянно улучшается, и теперь можно записывать уже не 3,95, а «полные» 4,7 Гбайт на диск (Hitachi, Maxell и др.), которые приняты на сегодняшний день в качестве единицы хранения для продукции DVD-ROM и DVD-Video. Причем такое усовершенствование не является изменением формата DVD-R, а получено в результате одного лишь повышения плотности записи.
Однако внедрение технологий записи DVD-дисков также не обходится без скандалов. Новая «скандальная» технология перезаписи DVD с изменением фазы, так называемая DVD+RW,появилась без одобрения DVD-Форума по инициативе таких фирм, как Philips, Sony, Hewlett-Packard и других. Являясь конкурирующей технологией записи, она ближе к принципам, применяемым в CD-RW. Дисководы DVD+RW будут читать диски DVD-ROM и CD, но не будут работать с дисками DVD-RAM. Обычные приводы DVD-ROM не будут читать DVD+RW, и новые дисководы потребуют дополнительной доработки.
DVD+RW, в отличие от DVD-RW, не помещается в специальный картридж-caddy, а выглядит как обычный оптический компакт-диск. Он также более прочный, чем DVD-RW.
Как уже говорилось, DVD+R/+RW и DVD-R/-RW являются не совместимыми стандартами в DVD индустрии и рядовой покупатель пока не решается выбрать какой-то один, он находится, скажем так, в выжидательной позиции, тем самым сдерживая продажи DVD и в итоге развитие данной индустрии. DVD-R/-RW поддерживается Форумом DVD, который создал первоначальную спецификацию DVD и включает таких производителей как: Hitachi, Intel, IBM, Microsoft, JVC и Sony. С другой стороны — DVD+RW Alliance c DVD+R/+RW, который насчитывает б производителей электронных компонент, компьютеров, систем хранения данных, включая Dell,HP,Sony и Philips. Как мы видим, с двух сторон собрались крупные игроки, и вряд ли кто-то из них захочет уступить место на рынке. Собственно, сравнительную популярность двух конкурирующих стандартов мы можем наглядно наблюдать по спискам компаний, их поддерживающих: стандарт DVD-RW поддерживает 223 компании, тогда как DVD+RW — только 56. Причем, если внимательно посмотреть на эти списки, то несложно увидеть, что в первом их них содержится куда больше известных и громких имен, чем во втором.
Некоторые производители, например Sony (недавно выпустила DRX-500UL и DRU-500A), уже начали выпускать приводы, поддерживающие оба конкурирующих формата.
До конца 2002 года, все выпускаемые приводы поддерживали запись на DVD+/-R с максимальной скоростью только 2,4х. Но уже в начале 2003 года, компания NEC решила исправить положение и выпустила привод MultiSpin ND-1100A, став первым производителем накопителей, позволяющих записывать диски форматов DVD+R и DVD-R со скоростью 4х. Теперь на новом дисководе один час фильма, произведя нехитрые вычисления, можно записать за 15 мин.
В августе 2002, DVD+RW Alliance принял спецификацию DVD+R со скоростью записи кратной 4, а ранее DVD Форум принял 4х DVD-R и 2х DVD-RW. Как мы видим, выпуск новой продукции не заставил себя долго ждать. Что касается формата DVD-R, то сейчас уже многие производители выпускают приводы со скоростью записи 4х. Кроме того, Форум неожиданно принял и спецификацию DVD-RAM (random access memory) со скоростью Зх, a DVD+RW Alliance еще в августе 2002 анонсировал спецификацию 4х DVD+RW.
А компания Mitsubishi Electric уже распространила пресс-релиз, рапортующий о завершении работ направленных на создание полупроводникового лазера красного диапазона, с помощью которого можно записывать DVD диски на скоростях вплоть до 8х. Чтобы луч лазера уверенно «прожигал» бороздки в записывающем слое дисков на подобных скоростях потребовалось увеличение мощности излучения диода до 140 мВт (для записи 4х-скоростных DVD требовался лазер со 100 мВт выходом). Их массовое производство начнется в июне 2003 года.
2.2.5. Дисковод ZIP
Определенную популярность имел и дисковод ZIP фирмы Iomega – накопитель подобен дискете по принципу действия, но емкостью около 100 Мб и вставляется в специальный дисковод.
2.2.6. Флэш-память
Устройства, выполненные на одной микросхеме (кристалле) и не имеющие подвижных частей, основаны на кристаллах электрически перепрограммируемой флэш-памяти. Физический принцип организации ячеек флэш-памяти можно считать одинаковым для всех выпускаемых устройств, как бы они ни назывались. Различаются такие устройства по интерфейсу и применяемому контроллеру, что обусловливает разницу в емкости, скорости передачи данных и энергопотреблении.
Multimedia Card (MMC) и Secure Digital (SD) – сходит со сцены из-за ограниченной емкости (64 Мб и 256 Мб соответственно) и низкой скорости работы.
SmartMedia – основной формат для карт широкого применения (от банковских и проездных в метро до удостоверений личности). Тонкие пластинки весом 2 грамма имеют открыто расположенные контакты, но значительная для таких габаритов емкость (до 128 Мбайт) и скорость передачи данных (до 600 Кбайт/с) обусловили их проникновение в сферу цифровой фотографии и носимых МРЗ-устройств.
Memory Stick – “эксклюзивный” формат фирмы Sony, практически не используется другими компаниями. Максимальная емкость – 256 Мбайт, скорость передачи данных доходит до 410 Кбайт/с, цены сравнительно высокие.
CompactFlash(CF) – самый распространенный, универсальный и перспективный формат. Легко подключается к любому ноутбуку. Основная область применения – цифровая фотография. По емкости (до 3 Гбайт) сегодняшние CF-карты не уступают IBM Microdrive, однако отстают по скорости обмена данными (около 2 Мбайт/с).
Рис. 4. USB Flash Drive
USB Flash Drive – последовательный интерфейс USB с пропускной способностью 12 Мбит/с или его современный вариант USB 2.0 с пропускной способностью до 480 Мбит/с. Сам носитель заключен в обтекаемый компактный корпус, напоминающий автомобильный брелок. Основные параметры (емкость и скорость работы) полностью совпадают с CompactFlash, поскольку чипы самой памяти остались прежними. Может служить не только “переносчиком” файлов, но и работать как обычный накопитель – с него можно запускать приложения, воспроизводить музыку и сжатое видео, редактировать и создавать файлы. Низкое среднее время доступа к данным на Flash-диске – менее 2,5 мс. Вероятно, накопители класса USB Flash Drive, особенно с интерфейсом USB 2.0, в перспективе смогут полностью заменить собой обычные дискеты и частично – перезаписываемые компакт-диски, носители Iomega ZIP и им подобные.
PC Card (PCMCIA ATA) – основной тип флэш-памяти для компактных компьютеров. В настоящее время существует четыре формата карточек PC Card: Type I, Type II, Type III и CardBus, различающиеся размерами, разъемами и рабочим напряжением. Для PC Card возможна обратная совместимость по разъемам “сверху вниз”. Емкость PC Card достигает 4 Гб, скорость – 20 Мб/с при обмене данными с жестким диском.
Miniature Card (MC) – карточка флэш-памяти, предназначена в основном для карманных компьютеров, мобильных телефонов и цифровых фотокамер. Стандартная емкость составляет 64 Мбайт и больше.
Рис. 5. Miniature Card (MC)
xD Picture Card (extreme Digital) является новым типом флэш-памяти, разработанным компанией Toshiba специально для цифровых фотоаппаратов. На сегодняшний день это самое миниатюрное устройство флэш-памяти. Благодаря использованию технологии NAND не имеет ограничений на максимальный объем. Сейчас известны карточки xD Picture Card емкостью до 1 Гбайт, ожидается появление изделий емкостью до 8 Гбайт.
MirrorBit Flash, разработанная компанией AMD, основана на технологии хранения в ячейке двух бит. Каждая ячейка разделена на симметричные (зеркальные) половинки изолирующим слоем из нитрида кремния и, таким образом, имеет удвоенную емкость. За счет “зеркальности” более быстро формируется стандартная 16-битная страница данных, что увеличивает скорость обмена. Чипы семейства MirrorBit имеют емкость 64 Мбит и могут быть установлены на большинство современных типов твердотельных устройств памяти.
Вопросы:
1. Раскройте понятие оперативная память, кэш-память, CMOS-память.
2. Дайте определения понятиям жесткий магнитный диск.
3 Что собой представляют компактные твердотельные носители (Стримеры, Гибкие диски, CD-ROM и CD-RW, Накопители DVD-ROM,. Дисковод ZIP, Флэш-память).
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
zdamsam.ru
Презентация по информатике на тему «Современные устройства хранения информации»(9 класс)
В данной презентации рассказывается о современных устройствах хранения информации, целью которого является акцентирование внимания учащихся на действиях с информацией (информационных процессах), дать учащимся представление о современных носителях информации, показать разнообразие носителей информации. Урок получается интегрированный (информатика + история).
Данную презентацию можно использовать при изучении темы «Устройства хранения информации» в 8 классе, а так же в 9 классе при изучении темы «История ЭВМ»(если предмет информатика преподается в 5 классах, то можно использовать).
Презентацию можно начать такими словами: «С каждым годом объёмы востребованной нами информации растут, человечество, как никогда раньше, производит и потребляет огромное количество информации: видео, фото, аудио, игры, документы, презентации. В современных домашних компьютерах жесткий диск уже может посоревноваться по объему памяти с серверами крупных компаний, выполненных 5 лет назад на имевшейся в то время элементной базе. Это относится не только к винчестерам, но и к флеш накопителям, которые в своих размерах объемов памяти и скоростях работы растут с каждым днем. В современном мире, информация хранится в разном виде:
· текста;
· рисунка;
· схемы;
· фотографии;
· звукозаписи;
· кино и видеозаписи и т.д.
В каждом случае применяются свои носители. Носитель — это материальная среда, используемая для записи и хранения информации.
На третьем слайде ребята знакомятся с накопителями гибких магнитных дисков. Так как дискетами мало кто пользуется (можно сказать, что совсем не используется в практике), то детей заинтересует ее история и применение на практике.
На четвертом слайде дети познакомятся о жестких магнитных носителях.
Винчестер компьютера — это пакет магнитных дисков, надетых на общую ось.
Информационная емкость современных винчестеров измеряется в Гб.Накопитель на жестком диске относится к наиболее совершенным и сложным устройствам современного ПК. Его диски способны вместить многие мегабайты информации, передаваемой с огромной скоростью. Основные принципы работы жесткого диска мало изменились со дня его создания. Взглянув на накопитель на жестком диске, вы увидите только прочный металлический корпус. Он полностью герметичен и защищает дисковод от частичек пыли. Кроме того, корпус экранирует накопитель от электромагнитных помех.
Далее речь идет о флеш-носителях, которые не так уж давно вошли в нашу жизнь, и пользуемся по сей день. Устройства, выполненные на одной микросхеме (кристалле) и не имеющие подвижных частей, основаны на кристаллах электрически перепрограммируемой флэш-памяти. Физический принцип организации ячеек флэш-памяти можно считать одинаковым для всех выпускаемых устройств, как бы они ни назывались. Различаются такие устройства по интерфейсу и применяемому контроллеру, что обусловливает разницу в емкости, скорости передачи данных и энергопотреблении.
На слайде перечислены основные вид флеш-носителей: Multimedia Card (MMC), SmartMedia, Memory Stick , CompactFlash (CF) и т.д.
На следующих слайдах(6-9) демонстрируются различные виды компакт-дисков (англ. Compact Disc) — оптический носитель информации в виде пластикового диска с отверстием в центре, процесс записи и считывания информации которого осуществляется при помощи лазера. CD становятся все более быстродействующими и дешёвыми. На диске CD промышленным способом записывается информация. Наибольшее распространение получили 5-дюймовые диски CD емкостью 670 Мбайт. По своим характеристикам они полностью идентичны обычным музыкальным компакт-дискам. DVD(Digital Versatile Disk, ранее Digital Video Disk), т. е. многоцелевой цифровой диск – тип компакт-дисков, хранящий от 4,7 до 17 Гбайт информации, что вполне достаточно для полнометражного фильма. Такой объем способен удовлетворить любого производителя компьютерных игр и энциклопедий, для выпуска которых обычно требовалось несколько CD-ROM, вызывая неудобства у пользователя. Спецификаций DVD-ROM рассматривает диски и технологию DVD в качестве средства хранения компьютерных данных, обладающего громадной емкостью. BD(Blu-ray — англ. blue ray — синий луч и disc — диск) — формат оптического носителя, используемый для записи и хранения цифровых данных, включая видео высокой чёткости с повышенной плотностью. Магнитно-оптический диск — носитель информации, сочетающий свойства оптических и магнитных накопителей. В последнее время все более широкое признание получает магнитооптическая технология, которая использует магнитные и оптические механизмы записи и чтения; все чаще магнитооптические накопители используются для хранения больших объемов информации.
На 10 слайде: Оперативная память (RAM – random access memory, ОЗУ) – устройство, предназначенное для хранения обрабатываемой информации (данных) и программ, управляющих процессом обработки информации. Конструктивно представляет собой набор микросхем, размещенных на одной небольшой плате (модуль, планка). Модуль (модули) оперативной памяти вставляется в соответствующий разъем материнской платы, позволяя таким образом связываться с другими устройствами ПК.
На 11 слайде: Кэш-память (с английского cash – запас)– устройство, имеющее очень короткое время доступа к данным. Встроенная в микросхему сверхбыстрая память. Обычно имеет размер 256 или 512 Кбайт, в мощных компьютерах до 1Гб и более.
www.metod-kopilka.ru
Лекция 8 Устройства хранения данных
Лекция 8. Устройства хранения данных
Вопросы:
Общая характеристика устройств хранения данных.
Принципы хранения информации.
Хранение информации на магнитных дисках.
Литература: 1. Гук. М. Аппаратные средства IBM PC. Питер, 2005, с. 510-545.
Общая характеристика устройств хранения данных.
Утройства хранения данных относятся к внешней памяти компьютера — они пзволяют сохранять информацию для последующего ее использования независимо от состояния (включен или выключен) компьютера. В устройствах хранения данных могут быть реализованы различные физические принципы хранения информации — магнитный, оптический, электронный в любых их сочетаниях. Внешняя память принципиально отличается от внутренней (оперативной) способом доступа к этой памяти процессора (исполняемой программы). Устройства внешней памяти оперируют блоками информации, но никак не байтами или словами, как, например, оперативная память. Эти блоки обычно имеют фиксированный размер, кратный степени числа 2. Блок может быть переписан из внутренней памяти во внешнюю или обратно только целиком, и для выполнения любой операции обмена с внешней памятью требуется специальная процедура (подпрограмма). Процедуры обмена с устройствами внешней памяти привязаны к типу устройства, его контроллеру и способу подключения устройства к системе (интерфейсу).
По методу доступа к информации устройства внешней памяти разделяются на устройства с прямым (или непосредственным) и последовательным доступом.
Прямой доступ подразумевает возможность обращения к блокам по их адресам в произвольном порядке. Традиционными устройствами с прямым доступом являются дисковые накопители, и часто в понятие «диск», или «дисковое устройство» вкладывают значение «устройство внешней памяти прямого доступа». Так, например, виртуальный диск в ОЗУ и электронный диск на флэш-памяти отнюдь не имеют круглых, а тем более вращающихся деталей.
Традиционными устройствами с последовательным доступом являются накопители на магнитной ленте, они же стримеры. Здесь каждый блок информации тоже может иметь свой адрес, но для обращения к нему устройство хранения должно сначала найти некоторый маркер начала ленты (тома), после чего последовательным холостым чтением блока за блоком дойти до требуемого места и только тогда производить собственно операции обмена данными. Конечно, каждый раз возвращаться на начало ленты необязательно, однако необходимость последовательного сканирования блоков (вперед или назад) — неотъемлемое свойство устройств последовательного доступа. Несмотря на очевидный проигрыш во времени доступа к требуемым данным, ленточные устройства последовательного доступа в качестве внешней памяти находят применение для хранения очень больших массивов информации. В отличие от них устройства прямого доступа — диски самой различной природы — являются обязательной принадлежностью подавляющего большинства компьютеров.
Главная характеристика устройств — емкость хранения, измеряемая в килобайтах, мегабайтах, гигабайтах и терабайтах (Кбайт, Мбайт, Гбайт, Тбайт, или в английской транскрипции КВ, МВ, СВ, ТВ, или, еще короче — К, М, С, Т). Здесь, как правило, приставки кило-, мега-, гига-, тера- имеют десятичные значения — 103, 106, 109 и 1012 соответственно. В других подсистемах компьютера, наример при определении объема ОЗУ, ПЗУ и другой внутренней памяти, эти же приставки чаще применяют в двоичных значениях 2’°, 220, 230 и 240 соответственно, при этом 1 Кбайт = 1024 байт, 1 Мбайт = 1024 Кбайт, 1 Гбайт = 1024 Мбайт, 1 Тбайт = 1024 Гбайт. Этими разночтениями объясняются различия значений емкости одного и того же устройства, полученных из разных источников. «Двоичные» кило-, мега-, гига-, тера- более «увесисты», поэтому емкость устройства, выраженная в десятичных единицах, будет выглядеть внушительнее. Так, например, объем памяти в 528 Мбайт (десятичных) составляет 504 Мбайт (двоичных).
Устройства внешней памяти могут иметь сменные или фиксированные носители информации. Применение сменных носителей позволяет хранить неограниченный объем информации, а если носитель и формат записи стандартизованы, то они позволяют еще и обмениваться информацией между компьютерами. Существуют устройства с автоматической сменой носителя — ленточные карусели, дисковые устройства JuкеВох. Эти достаточно дорогие устройства применяют в мощных файл-серверах. Для настольных машин имеются накопители СD-RОМ с несколькими дисками (СD-сhаngеr), сменяемыми автоматически.
Важнейшими общими параметрами устройств являются время доступа, скорость передачи данных и удельная стоимость хранения информации.
Время доступа (ассеs time) определяется как усредненный интервал от выдачи запроса на передачу блока данных до фактического начала передачи. Дисковые устройства имеют время доступа от единиц до сотен миллисекунд. Для электронных устройств внешней памяти время доступа определяется быстродействием используемых микросхем памяти и при чтении составляет доли микросекунд, причем запись может продолжаться значительно дольше, что объясняется природой энергонезависимой электронной памяти. Для устройств с подвижными носителями основной расход времени имеет место в процессе позиционирования головок (seek time — время поиска) и ожидания подхода к ним требуемого источника носителей (latency — скрытый период). Для дисковых и ленточных устройств принципы позиционирования различны, и различные составляющие процесса поиска.
Скорость записи и считывания определяется как отношение объема записываемых или считываемых данных ко времени, затрачиваемому на эту операцию. В затраты времени входит и время доступа, и время передачи данных. При этом оговаривается характер запросов — линейный или случайный, что сильно сказывается на величине скорости из-за влияния времени доступа. При определении скорости линейных запросов чтения-записи производится обращение к длинной цепочке блоков с последовательным нарастанием адреса. При определении скорости случайных запросов чтения-записи — соседние запросы разбросаны по всему носителю. Для современных многозадачных ОС характерно чередующееся выполнение нескольких потоков запросов, и в каждом потоке высока вероятность последовательного нарастания адреса.
Скорость передачи данных определяется как производительность обмена данными, измеряемая после выполнения поиска данных. Однако в способе измерения этого параметра возможны разночтения, поскольку современные устройства имеют в своем составе буферную память существенных размеров. Скорости обмена буферной памяти с собственно носителем (внутренняя скорость) и с внешним интерфейсом могут существенно различаться. Если скорость работы внешнего интерфейса ограничивается быстродействием электронных схем и достижимой частотой передаваемых сигналов, то внутренняя скорость более жестко ограничивается возможности электромеханических устройств, (скоростью движения носителя и плотностью записи). При измерениях скорости передачи на небольших объемах пересылок проявится ограничение внешнего интерфейса буферной памяти, при средних объемах — ограничение внутренней скорости, а при больших объемах проявится еще и время поиска последующих блоков информации. Бывает, что в качестве скорости передачи данных указывают лишь максимальную скорость интерфейса, а о внутренней скорости можно судить по частоте вращения дисковых носителей и числу секторов на треке.
Определение удельной стоимости хранения информации для накопителей с фиксированными носителями пояснения не требует. В случае сменных носителей этот показатель интересен для собственно носителей, но не следует забывать и о цене самих приводов, которую тоже можно приводить к их емкости.
По отношению к корпусу компьютера устройства могут быть внутренними и внешними.
Внутренние устройства помещаются в специальные трех- или пятидюймовые отсеки корпуса компьютера и питаются от его же блока питания. В описании корпусов компьютеров отсеки также подразделяются на внешние и внутренние, но они различаются лишь тем, может ли передняя панель устройства, установленного в отсек, выходить на лицевую панель корпуса или нет.
Внешние устройства помещают в отдельный корпус, а питаются они от собственного блока питания или перехватывают питание +5 В от разъема клавиатуры компьютера. Внешнее исполнение имеют как малогабаритные портативные устройства, так и особо крупные дисковые массивы. Сами приводы для внешних и внутренних устройств обычно имеют одинаковый конструктив одного из распространенных форматов.
Принципы хранения информации.
Энергонезависимое хранение информации может осуществляться на различных физических принципах. Раньше всех начали применять магнитный способ хранения, где запись нуля или единицы изменяет направление намагниченности элементарной хранящей ячейки. Устройства хранения на магнитных сердечниках состояли из матрицы ферритовых колец (по кольцу на каждый хранящийся бит), пронизанных обмотками (адреса, записи и считывания).
Шины адрес ячейки
Шины считывания информации
Рис. 8.1. Матрица ферритовых колец памяти.
Считывание выполнялось импульсом тока, пытающимся намагнитить ячейку в определенном направлении. Если ячейка была в противоположном состоянии, то эта попытки наводила импульс в обмотке считывания. Устройства ферритовой памяти были громоздкими, но сугубо статическими — в них не было движущихся частей. В устройствах с подвижным носителем хранящие ячейки движутся относительно головок записи-считывания и в зависимости от направления намагниченности вызывают в головке считывания импульс определенной полярности. На таком принципе строились и магнитные барабаны первых ЭВМ, и магнитные диски, и накопители на магнитной ленте.
Оптические устройства хранения основаны на изменении отражающей или пропускающей способности участков носителей. Носителями для первых оптических устройств были фотопленка, перфолента, перфокарты. Теперь оптические устройства хранят информацию на дисках с ячейками микроскопических размеров, считываемых лазерным лучом. В конце 2000 года появилось сообщение о новом типе оптических дисков FMD (Fluorescent Multilayer Disk = флуоресцентный многослойный диск), разработанном компанией Constetlation 3D Inc. (СЗD). В этих дисках информацию несут частички флуоресцирующего вещества, вкрапленные в слои прозрачного пластика. В отличие от СD/DVD, где информативна степень отражениz лазерного луча от текущей точки поверхности, здесь воспринимается флуоресцентное свечение, вызванное этим лучом. Оптическая система привода позволяет фокусироваться лишь на требуемом слое. Поскольку слои прозрачны, их число может быть значительно увеличено без ощутимых потерь сигнала. Для начала предлагается 12-слойный диск емкостью 50 Гбайт со скоростью считывания до 1 Гбит/с. Пока что разработана технология печати дисков с матриц (RОМ), но уже прорабатывается и технология однократно записываемых дисков. Первые сообщения о проекте «трехмерных дисков» появились еще в 1997 году.
Из электронных устройств распространение получила флэш-память, сочетающая довольно высокую плотность хранения с теперь уже приемлемой ценой. Флэш-память является статической и имеет очень высокое быстродействие считывания, но не очень быструю процедуру записи, причем для перезаписи должен предварительно стираться целый блок ячеек (современные микросхемы состоят из набора блоков). В режиме хранения на флэш-память питание можно не подавать — энергопотребление нулевое. В режиме чтения потребление достаточно малое, но стирание и запись требуют энергозатрат.
Устройства хранения на флэш-памяти выпускаются в разнообразных конструктивных исполнениях. Первые «статические диски» выполнялись в виде устройств формата 3,5″ с интерфейсом АТА. Затем появились флэш-карты с интерфейсом РС Card (РСМСIА), Card Bus, которые используются в блокнотных ПК, а также в ряде бытовых электронных устройств, например в цифровых фотокамерах. Поскольку процессы записи-считывания такого «диска» не связаны с механическими перемещениями, его производительность (особенно по чтению) на несколько порядков превышает производительность самых лучших жестких дисков. Флэш-память относится к классу электрического стирания, но использует особую технологию построения запоминающих ячеек. Стирание производится сразу для целой области ячеек или полностью для всей микросхемы.
Каждая ячейка флэш-памяти состоит всего из одного униполярного (полевого) транзистора. Чистые (стертые) ячейки содержат единицу во всех битах; при записи (программировании) нужные ячейки обнуляются. Возможно последующее программирование и уже записанных ячеек, но при этом можно обнулять единичные биты , а не наоборот. В единичное состояние ячейки переводятся только при стирании. Стирание производится для всей матрицы ячеек; стирание одиночной ячейки невозможно.
Хранение информации на магнитных дисках.
Дисковые накопители имеют своей основой механизм, схематически представленный на рис. 8.2.
Вращение диска
Головка записи-считывания
Поиск трека
Рис. 8.2. Устройство дискового накопителя
Носителем информации является диск (один или несколько), на который нанесен слой вещества, способного намагничиваться (чаще всего ферромагнитный). Хранимую информацию представляет состояние намагниченности отдельных участков рабочей поверхности. Диски вращаются с помощью двигателя шпинделя, обеспечивающего требуемую частоту вращения в рабочем режиме. На диске имеется индексный маркер, который, проходя мимо специального датчика, отмечает начало каждого оборота диска. Информация на диске располагается на концентрических треках (дорожках), нумерация которых начинается с внешнего трека (трек 00). Каждый трек разбит на секторы фиксированного размера. Сектор и является минимальным блоком информации, который может быть записан на диск или считан с него. Нумерация секторов начинается с единицы и привязывается к индексному маркеру. Каждый сектор имеет служебную область, содержащую адресную информацию, контрольные коды и некоторую другую информацию, и область данных, размер которой традиционно составляет 512 байт. Если накопитель имеет несколько рабочих поверхностей (на шпинделе может быть размещен пакет дисков, а у каждого диска могут использоваться обе поверхности), то совокупность всех треков с одинаковыми номерами составляет цилиндр. Для каждой рабочей поверхности в накопителе имеется своя головка, обеспечивающая запись и считывание информации. Головки нумеруются, начиная с нуля. Для того чтобы произвести элементарную операцию обмена — запись или чтение сектора, шпиндель должен вращаться с заданной скоростью, блок головок должен быть подведен к требуемому цилиндру, и только когда нужный сектор подойдет к выбранной головке, начнется физическая операция обмена данными между головкой и блоком электроники накопителя. Кроме того, головки считывают служебную информацию (адресную и сервисную), позволяющую определить и установить их текущее местоположение. Для записи информации на носитель используюся различные методы частотной модуляции, позволяющие кодировать двоичную информацию, намагничивая зоны магнитного слоя, проходящие под головкой. Перемагничивание зоны происходит лишь в том случае, если магнитное поле в ней преодолеет некоторый порог Нс (коэрцитивную силу), свойственный данному носителю,
в
Намагничивание
Размагничивание
+вr-Н2 -нс +нс
Н1 н
-вr
где
При считывании намагниченные зоны наводят в головке электрический сигнал, величина напряжения которого равна:
,
где — скорость вращения диска намагниченного величиной;
w – число обмоток в считывающей головке;
S – поперечное сечение магнитного материала (зона записи), из которого декодируется ранее записанная информация.
Контроллер накопителя выполняет сборку и разборку блоков информации (секторов или целых треков), включая формирование и проверку контрольных кодов, осуществляет модуляцию и демодуляцию сигналов головок и управляет всеми механизмами накопителя.
Несмотря на кажущуюся простоту конструкции записать и потом достоверно считать информацию с диска не так-то просто. Для записи данных необходимо сформировать последовательный код, который должен быть самосинхронизирующимся:
при последующем считывании из него должны извлекаться и данные, и синхросигнал, что позволяет восстановить записанную цепочку битов (этим занимается сепаратор данных — узел дискового контроллера).
Кроме того, напомним, что индуктивные считывающие головки воспринимают только факты изменения намагниченности участков трека. Также учтем, что физическое исполнение — магнитные свойства носителя, конструкция головок, скорость движения, высота расположения головок и т. п. — задает предельно достижимую плотность изменения состояния намагниченности, которую хотелось бы использовать максимально эффективно. Эта плотность измеряется в количестве зон с различным состоянием намагниченности на дюйм длины трека и в современных накопителях достигает десятков тысяч BPI (Bit Per Inch = бит на дюйм). Для записи на диск применяют различные схемы кодирования, отличающиеся по сложности реализации и эффективности работы. В первых моделях накопителей использовалась частотная модуляция FM. Здесь для каждого бита данных на треке отводится ячейка с окнами для представления бита и синхросигнала, что весьма неэффективно расходует предел плотности намагниченности. Более эффективна модифицированная частотная модуляция MFM, при которой синхросигнал вводится только в процессе кодирования следующих подряд нулевых битов, что позволяет удвоить плотность записи при той же плотности изменения потока. Обе схемы (FM и MFM) являются схемами с побитным кодированием. Более эффективны схемы группового кодирования, при которых цепочка байтов данных (сектор) предварительно разбивается на группы по несколько битов, кодирующихся по определенным правилам. Схема кодирования RLL (Run Length Limited), как это следует из названия (работа в ограниченной длине), построена на ограничении длины неперемагничиваемых участков трека. Наиболее популярна схема RLL 2.7 — в ней число неперемагничиваемых ячеек лежит в диапазоне от 2 до 7. Для накопителей с высокой плотностью используется схема RLL 1.7, обеспечивающая большую надежность считывания.
Из-за того что линейная скорость носителя относительно головки на внутренних цилиндрах меньше, чем на внешних, для обеспечения нормальной записи при меньшей скорости приходится применять предварительную компенсацию записи. Для накопителей со встроенным контроллером этот параметр игнорируется, поскольку они сами «знают», как работать со своими дисками.
Информация на дисках записывается и считывается по-секторно, и каждый сектор имеет определенную структуру (формат). В заголовке имеется поле идентификатора, включающее номер цилиндра, головки и собственно сектора. В этом же идентификаторе может содержаться и пометка о дефектности сектора, служащая указанием на невозможность его использования для хранения данных. Достоверность поля идентификатора проверяется с помощью контрольного кода заголовка. Заголовки секторов записываются только во время операции низкоуровневого форматирования, причем для всего трека сразу. При обращении к сектору по чтению или записи заголовок только считывается. Поле данных сектора отделено от заголовка небольшим зазором, необходимым для того, чтобы при операции записи головка (точнее, обслуживающая ее схема) могла успеть переключиться из режима чтения (заголовка) в режим записи (данных). Сектор завершается контрольным кодом поля данных — контроль с помощью циклического избыточного кода) или ЕСС обнаружением и коррекцией ошибок. СКС-код позволяет только обнаруживать ошибки, а ЕСС-код — еще и исправлять ошибки небольшой кратности. В межсекторных промежутках может размещаться сервоинформация, служащая для точного наведения головки на трек.
Современные жесткие диски внутренне могут быть организованы несколько иначе, чем в вышеописанной схеме. Индексные датчики теперь не используются — начало трека определяется из считываемого сигнала. Физическая разбивка на секторы (по 512 байт данных, которым предшествует идентификатор) может отсутствовать — группа секторов трека представляет собой единый битовый поток, защищенный избыточным кодированием, из которого вычисляется блок данных, находящийся в требуемой позиции (так называемый ID-less format). Для коррекции данных применяются избыточные коды Рида-Соломона, позволяющие большинство ошибок исправлять «на лету», не требуя повторного считывания.блока данных и дополнительного оборота диска.
Для того чтобы диск можно было использовать для записи и считывания информации, он должен быть отформатирован. Форматирование может разделяться на два уровня.
1. Низкоуровневое форматирование (LLF— Low Level Formatting) — форматирование заголовков и пустых (расписанных заполнителем) полей данных всех секторов всех треков. При форматировании выполняется и верификация (проверка читаемости) каждого сектора, и в случае обнаружен неисправимых ошибок считывания в заголовке сектора делается помет о его дефектности.
2. Форматирование верхнего уровня заключается в формировании логической структуры диска (таблиц размещения файлов, корневого катале и т. п.,), соответствующее файловой подсистеме применяемой ОС. Эта процедура выполнима только после низкоуровневого форматирования.
Итак, структура трека — последовательность секторов — задается при его форматировании, а начало трека определяется контроллером по сигналу от и индексного датчика или иным способом.
Нумерация секторов, которая задается контроллеру при форматировании, может быть достаточно произвольной — важно лишь, чтобы все секторы трека имели уникальные номера в пределах допустимого диапазона.
При обращении к сектору он ищется по идентификатору, а если за оборот диска (или за несколько оборотов) сектор с указанным номером не будет найден, контроллер зафиксирует ошибку Sector not found (сектор не найден). Забота о поиске сектора по его заголовку, помещение в его поле даннь записываемой информации, снабженной контрольным кодом, а также считывание этой информации и ее проверка с помощью СКС- или ЕСС-кода лежит на контроллере накопителя. И конечно же, контроллер управляет поиском затребованного цилиндра и коммутацией головок, выбирая нужный трек.
9
studfiles.net
Современные накопители информации — Компьютерная техника
Накопители
Накопители информации были придуманы для того, чтобы исходные данные можно было записывать, а результаты работы — сохранять. Но сегодня они прочно заняли свое место в нашей повседневной жизни, когда приходится пропускать через себя море рабочей и личной информации. Наиболее распространенные в настоящее время такие накопители информации: жесткие диски, магнитные запоминающие устройства в пластиковых картах, микросхемы SDRAM, флеш-память (карты памяти в современных устройствах, USB накопители), оптические диски (CD, DVD, Blu-Ray).
Жесткий диск или «винчестер»
Сегодня невозможно представить себе компьютер без такого важного устройства хранения данных, как накопителя на жестких магнитных данных в сокращенном варианте — НЖМД. Его неофициальный, но широко используемый синоним — винчестер. Они предназначены для постоянного хранения информации, которая используется при работе с компьютером: редакторов документов, программ операционной системы, трансляторов с языков программирования, часто используемых пакетов программ и многое другое. Выбор жестких дисков сейчас огромен на любой вкус и цвет. Для этого нужно изучить полный ассортимент жестких дисков.
Магнитные запоминающие устройства в пластиковых картах
Гибкий диск или дискета — компактное низкоскоростное малой емкости средство, позволяющее хранить информацию и переносить ее с одного компьютера на другой. Различают дискеты следующих размеров: 3.5, 5.25, 8 дюймов (последние два типа теперь редко встречаются). Интересен тот факт, что размер в 3.5 дюйма соответствует в точности размеру кармана рубашки.
Микросхемы SDRAM
В переводе с английского означает «синхронная динамическая память с произвольным доступом». Этот вид накопителя информации используют в компьютере в качестве оперативного запоминающего устройства.
Флеш-память
Флеш-память — особый вид энергонезависимой (энергия нужна только для записи) перезаписываемой полупроводниковой памяти. Свое название получила благодаря тому, как производится запись и стирание данного вида памяти. Сегодня словосочетание «флеш-память» обозначает широкий класс твердотельных устройств накопителей информации. Отличаются дешевизной, компактностью, механической прочности, а также большим объемом, скоростью работы и низкому энергопотреблению.
Самый востребованный вид накопителя информации — USB флеш накопители. С ними очень легко и удобно работать, главное не потерять саму флешку.
Различные современные устройства (цифровые камеры, радиотелефоны, диктофоны) имеют флеш-память — карты памяти. Сегодня можно встретить их различные форматы: Compact Flash, SD (Secure Digital Card), XD — Picture Card, Memory Stick, MMC (Multimedia Card) / SD (Secure Digital Card), MMC (Multimedia Card), Smart Media Card.
Оптические накопители информации
CD диски позволяют не только записывать, но и надежно хранить данные во всех форматах (аудио, видео, фото) на дешевом и простом носителе лазерном компакт-диске.
DVD диски визуально мало чем отличаются от обычных CD-ROM, но имеют гораздо больше возможностей: записывать и переписывать большой объем информации, проигрывать ее на DVD приставке. Различают два основных формата: DVD R(W) и DVD+R(W), которые созданы различными организациями. Между собой форматы «плюс» и «минус» не совместимы, поэтому при выборе носителей нужно ознакомиться со списком дисков, которые поддерживает ваш рекордер.
Blu-ray (голубой-луч) диски — это оптические диски последнего поколения, которые позволяют сохранять видео высокой четкости и данные повышенной плотности.
Информацию нужно хранить, но с развитием современных технологий очень быстро меняются и сами накопители информации. И дорогую сердцу видеокассету с записью свадьбы лучше перезаписать на более современный носитель информации.
sd-company.su
Обзор технологий хранения информации. Часть II. Современные устройства последовательного доступа
После выхода в свет первой части обзора мне пришло несколько писем, в которых респонденты просили во второй части обязательно рассмотреть новые, и, соответственно еще пока непонятные технологии памяти, такие как жесткие диски на основе флэш-памяти, SATA-II, DDR-III, перспективные разработки MRAM… Но… всему свое время.
А в этой статье, мы с вами продолжим знакомство с запоминающими устройствами с последовательным доступом.
Часть II. Современные устройства последовательного доступа
“…Теперь, когда они шли по гигантской черной ленте, Шестипалый видел, что Затворник сказал ему правду. Действительно, мир, который они покинули, медленно двигался вместе с этой лентой относительно других неподвижных космических объектов, природы которых Шестипалый не понимал, а светила были неподвижными — стоило сойти с черной ленты, и все стало ясно. Сейчас оставленный ими мир медленно подъезжал к зеленым стальным воротам, под которые уходила лента…”
В. Пелевин «Затворник и Шестипалый»
Большая часть ЗУ с последовательным доступом, не выдержав конкуренции с другими типами памяти, уже повымерла, до наших дней, видоизменяясь и совершенствуясь, дожил, пожалуй, лишь один тип ЗУ с последовательным доступом – накопитель на магнитной ленте или, как его еще называют, стример (от английского “stream” — поток).
История стримеров насчитывает более полувека, а началась она в 1953 году, когда IBM представила первый накопитель на магнитной ленте. В нем использовалась многодорожечная лента шириной полдюйма располагавшаяся на бобинах.
Первый стример от IBM
Своим устройством стример весьма напоминает обычный аудио- или видеомагнитофон. И это неудивительно – цифровой сигнал, с которым работают стримеры, является частным случаем аналогового, применяемого в аудио- и видеозаписи. Стримеры представляют из себя ЗУ со сменным носителем. Изначально в них использовались бобины, затем кассеты, а сейчас в стримерах применяются в основном картриджи.
Применение стримеров
На сегодняшний день единственной областью применения стримеров остается архивное хранение огромных объемов информации, где скорость доступа к данным не играет определяющей роли – здесь они прочно удерживают свои позиции, несмотря на появление оптических носителей высокой емкости и RAID-массивов жестких дисков.
На базе стримеров также организуются массивы, аналогичные дисковым RAID-массивам. При этом пропускная способность увеличивается в соответствующее количеству накопителей раз. Существуют также специальные автоматизированные библиотеки на основе стримеров, где обеспечивается возможность хранения многих тысяч картриджей и автоматической установкой/сменой их в накопителях. В таких системах может использоваться до нескольких сотен накопителей.
Устройство и принципы работы стримеров
Как и в магнитофонах, информация на магнитную ленту в стримерах записывается одним из двух основных методов:
Линейный метод записи
Информация располагается на продольных дорожках, проходящих по всей длине ленты. Запись и чтение осуществляются в одном направлении движения ленты. Разновидностью этого метода является линейно-серпантинный метод, где работа с данными производится в обоих направлениях движения ленты.
Принцип тот же что и в обычном кассетном магнитофоне.
Наклонно-строчный метод записи
Информация записывается на наклонных дорожках, проходящих по диагонали от одного края ленты к другому, используя головки, вращающиеся вокруг своей оси. Сама же ось наклонена под углом к направлению движения ленты (как в видеомагнитофонах).
Преимуществом этого метода является меньшая линейная скорость протяжки ленты. Поэтому в устройствах, работающих на этом принципе, можно применять более тонкую ленту. Соответственно, при одинаковых размерах картриджа, длина ленты может быть намного больше. Недостатком метода можно считать более быстрый износ ленты и головки.
Два типа расположения дорожек на магнитной ленте стримеров
Практически все стримеры практикуют программное и/или аппаратное сжатие информации. Это позволяет «малой кровью» достаточно серьезно увеличить емкость носителя и скорость работы с информацией. Поскольку данные бывают разные (от текстовых файлов, «утрамбовываемых» в 5-10 раз до .mp3 файлов, несжимаемых вообще), а оценивать как-то надо, то производители стримеров используют для оценки двукратное сжатие (2:1), увеличивая на этот же коэффициент и скорость работы с информацией. Далее, если не оговаривается специально, мы будем иметь в виду емкость носителя и скорость работы именно с несжатыми данными.
Интерфейсы стримеров
Я абсолютно уверен в двух вещах: первый стример от IBM был внешним и интерфейс, через который он подключался к компьютеру, как-то назывался. С тех пор так и повелось — все стримеры были внешними, и все они подключались через какие-нибудь интерфейсы, большинство из которых давно уже похоронены в глубинах специальных справочников и серьезных монографий. Иначе и быть не могло – размеры у стримеров тех лет были таковы, что даже в те, большие ЭВМ засунуть их было весьма проблематично. Что до интерфейсов, то каждая компания, производившая компьютеры и периферию к ним, заботилась больше об эффективности обмена данными с периферийными устройствами, чем о совместимости. Но со временем линейные размеры уменьшались, а интерфейсы более-менее стандартизировались. Современные же стримеры могут быть и внешними и внутренними и подключаются через один из нескольких стандартных интерфейсов: флоппи, IDE, SCSI или интерфейс параллельного порта (Centronix). Последние модели подключаются через суперпопулярные сегодня USB и FireWire (IEEE1394).
Семейства и форматы НМЛ
За прошедшие полвека появилось великое множество стандартов, форматов, моделей, семейств стримеров. Их можно разбить на несколько групп.
Стримеры, использующие методы линейной и линейно-серпантинной записи
QIC, QIC-Wide и Travan
Первый накопитель формата QIC появился в 1972 году. В нем использовался картридж, сходный с обычной аудиокассетой, емкостью 20МБ. В картридже использовалась четвертьдюймовая магнитная лента.
Накопители QIC используют обычный линейный метод записи, форматов же существует великое множество. Все они отличаются типом ленты, числом дорожек и плотностью записи.
Максимальная емкость картриджа в накопителях работающих по методу QIC составляет около 700МБ, что, конечно же, недостаточно для архивации больших объемов данных.
Для увеличения емкости, корпорация SONY в 80-х годах представила свою версию QIC — стандарт QIC-Wide, где емкость картриджа была увеличена до 2,3ГБ.
В 1994 году фирма Imation, создала новый стандарт картриджа на основе QIC и QIC-Wide, который был назван Travan. В этом стандарте максимальная емкость картриджа составляет 10ГБ, а при использовании сжатия — до 20ГБ. Накопители Travan могут также работать с некоторыми картриджами QIC и QIC-Wide.
Недостатком накопителей семейства QIC было низкое быстродействие и недостаточная емкость картриджей. В результате они вытеснены с рынка более производительными устройствами и в настоящее время уже не производятся.
Накопитель и картридж Tandberg Travan NS-8
DLT (Digital Linear Tape, цифровая линейная запись)
Формат DLT был разработан в середине 80-х годов компанией DEC для своих компьютеров MicroVAX. В 1994 году права на технологию у DEC приобрела компания Quantum.
В устройствах DLT используется полудюймовая магнитная лента. Информация записывается так называемым линейно-серпантинным методом. Лента современных устройств стандарта DLT содержит до 208 дорожек, а емкость картриджа достигает 35ГБ несжатых данных.
Технология DLT предоставляет мощные средства контроля целостности данных: используются коды коррекции ошибок по Риду-Соломону (ECC), 64-битный избыточный циклический код (CRC) и 16-битный код обнаружения ошибок (EDC).
В 1998 году Quantum анонсировала технологию Super DLT, которая позволит в будущем увеличить объем картриджа до 1ТБ несжатых данных и скорость записи до 100МБ/сек за счет многочисленных инновационных решений, таких, например как, использование комбинации методов оптической и магнитной записи (LGRT — Laser Guided Magnetic Recording).
Накопитель и картридж Tandberg DLT8000
SLR (Scalable Linear Recording)
В 1996 году компания Tandberg предложила технологию SLR, представляющую собой дальнейшее развитие технологии QIC. Особенностями стримеров от Tandberg являются тонкопленочные магниторезистивные многоканальные головки и оригинальная система отслеживания их положения. Технология позволяет записывать на 1 картридж до 50ГБ данных. Количество дорожек может доходить до 192.
Накопитель с автозагрузчиком Tandberg формата SLR
LTO (Linear Tape Open, открытый стандарт линейной записи)
Стандарт LTO был разработан компаниями HP, Seagate и IBM как альтернатива закрытому DLT. Существуют два формата, базирующихся на технологии LTO.
Формат Accellis разрабатывался для обеспечения исключительно быстрого доступа к данным. Предполагалось, что устройства, использующие этот формат, обеспечат среднее время доступа порядка 10 сек и будут иметь емкость 25 ГБ несжатых данных. Но на рынке, насколько мне известно, так и не появилось накопителей, работающих с этим форматом.
Другая разновидность LTO — формат Ultrium оказался более жизнеспособным. Первые стримеры этого формата появились в 2000 году и обеспечивали емкость 100ГБ несжатых данных при скорости записи 7,5МБ/сек, современные же обеспечивают скорость записи до 80МБ/сек на картриджи до 400ГБ. В планах разработчиков повысить эти цифры в два раза в стримерах Ultrium 4-го поколения.
Из особенностей этого формата можно упомянуть следующиие:
— Поддержка большого количества параллельных каналов на ленте
— Высокая плотность записи информации на ленту
— Улучшенный алгоритм сжатия информации — распознает сжатые данные и отключает компрессию
— Динамическое перемещение данных из испорченных областей на ленте, при поломке сервомеханизма или одной из головок чтения-записи
— LTO-CM (LTO Cartridge Memory) — чип для хранения информации о размещении данных на носителе.
Накопитель и картридж HP Ultrium LTO
ADR (Advanced Digital Recording)
Стандарт ADR предлагает на рынке компания On-Stream, являющаяся дочерней компанией Philips. Эта технология позволяет одновременно работать с 8 из 192 дорожек на ленте. Благодаря этому обеспечивается достаточно высокое быстродействие при низкой скорости ленты. И, как следствие, снижается нагрузка на ленту.
В технологии предусмотрена двойная ECC-коррекция ошибок — как горизонтально, так и вертикально. Изменяемая скорость подачи ленты позволяет подстраиваться под скорость передачи данных с диска без замедления самого процесса резервного копирования.
Накопители ADR воспринимаются ОС как отдельный диск, данные с которого напрямую доступны в ОС, то есть можно использовать содержимое ленты без восстановления данных. ADR позволяют сохранить 25 Гбайт несжатых данных на ленту. В будущем планируется увеличить емкость картриджа в несколько раз.
Накопитель On-Stream ADR
Стримеры, использующие метод наклонно-строчной записи
DAT/DDS (Digital Audio File/Digital Data Storage)
Формат DDS (Digital Data Storage) был разработан в 1989 году компаниями HP и Sony на базе формата DAT (Digital Audio Tape). Лента DAT/DDS имеет ширину 4мм, но в отличие от QIC, в этом стандарте применяется наклонно-строчная запись.
Стримеры этого формата — недорогие и достаточно эффективные устройства резервного копирования данных небольшого объема (формат DDS-4 обеспечивал емкость до 40ГБ). Не так давно появились модели нового поколения — DAT 72. Новые модели отличает вдвое большая емкость (до 72ГБ), достаточно низкая цену и совместимость по чтению и по записи с картриджами DDS предыдущих форматов. Скорость записи у новых моделей 3МБ/сек.
Недостатком DAT/DDS является высокая чувствительность к механическим воздействиям а также быстрый износ головок.
Накопитель SONY DDS-4
Mammoth tape
8-миллиметровая лента, изначально была разработана для видео, но в 1996 году компания Exabyte предложила свое решение, специально разработанное для нужд компьютерной индустрии. В нем была использована специальная лента AME (Advanced Metal Evaporated).
Накопители формата Mammoth позволяют записать на картридж 60ГБ несжатых данных со скоростью 12 МБ/сек. Срок службы магнитных головок составляет около 50тыс.ч. В накопителях для обеспечения целостности данных применяется двухуровневое кодирование Рида-Соломона.
Для очистки поверхности магнитных головок в этих стримерах используется специальная кассета SmartClean, в которой перед обычной магнитной лентой расположен небольшой отрезок чистящей ленты. В результате головки накопителя очищаются без вмешательства оператора.
Накопитель от Exabyte формата Mammoth-2
VXA компании Ecrix
Особенностью накопителей формата VXA являются специальные методы записи и считывания данных, такие как DPF (Discrete Packet Format, дискретный пакетный формат). Данные записываются не линейными блоками, а 64-байтовыми группами по 387 пакетов данных. Работа с пакетами данных может выполняться в произвольном порядке, при получении всех переданных пакетов данные собираются в первоначальную форму. Технология весьма напоминает пакетирование в Интернет.
OSO (Over Scan Operation, многократное сканирование) — В накопителях VXA осуществляется избыточное чтение каждой группы пакетов данных, что позволяет восстановить информацию даже с поврежденных лент.
VSO (Variable Speed Operation, работа на разных скоростях) Позволяет менять скорость ленты в соответствии с изменением скорости передачи данных. В отличие от обычного накопителя, где при перерыве в передаче данных, лента отматывается назад, VXA-накопитель просто останавливается, ожидает поступления очередной порции данных и продолжает запись с места, где ранее произошла остановка.
Накопитель с картриджем Exabyte VXA-2
AIT (Advanced Intelligent Tape)
Формат AIT был разработан компанией Sony. Устройства AIT-1 позволяли сохранять на одном картридже до 35ГБ несжатых данных со скоростью 3МБ/сек, а современные накопители AIT-4 — до 200ГБ со скоростью 24МБ/сек.
В AIT впервые была использована встроенная флэш-память MIC (Memory-In-Cassette), в которой помещается служебная информация о содержимом ленты и карта распределения данных, позволяющая оптимизировать доступ к ним. При использовании других технологий такая информация обычно хранится в первых сегментах ленты. В результате использования MIC поиск ускоряется в сотни раз по сравнению со скоростью чтения/записи.
Накопители AIT имеют систему слежения ATF (Auto Tracking Following), которая используется для точной записи на дорожку данных, и усовершенствованную технологию сжатия ALCD (Advanced Lossless Data Compression), разработки корпорации IBM. Она позволяет выполнять сжатие с коэффициентом 2,6:1 против обычного 2:1 для других технологий.
В этот накопитель встроена система очистки головок, которая активизируется при достижении лимита корректируемых ошибок.
Накопитель AIT от SONY
S-AIT (Super Advanced Intelligent Tape)
На базе AIT в 2001 году Sony разработала формат S-AIT. Ширина ленты S-AIT составляет 0.5 дюйма. AIT и S-AIT изготавливаются по одинаковой технологии, однако емкость кассеты S-AIT в 5 раз больше (500 ГБ несжатых данных) за счет увеличения общей площади ленты. S-AIT передает данные с очень высокой скоростью — 30 MБ/сек.
Скоро должен появиться SAIT-2, емкость картриджа в нем будет увеличена в два раза, до 1ТБ при скорости записи 60 МБ/с.
Также в разработке следующие поколения SAIT-3 и SAIT-4, где характеристики планируется удваивать от поколения к поколению.
Накопитель S-AIT от SONY
Прочие виды стримеров
Сегодня уже мало кто помнит, что кроме перечисленных мною устройств, в свое время предпринимались попытки использовать в качестве стримеров аудио- и видеомагнитофоны. Многие бытовые персональные компьютеры проектировались таким образом, что устройством хранения данных в них служил обычный домашний аудиомагнитофон. К примеру, все программное обеспечение моего первого ПК «Вектор-06» умещалось на одну аудиокассету.
Мой следующий компьютер Spectrum-48 также дружил с магнитофоном до тех пор, пока его не удалось «познакомить» с дисководом, а потом и с жестким диском. И до сих пор, роясь в старых аудиокассетах, бывает, находишь образчики с завлекательными надписями типа «все DIZZI» или «Elite и другие леталки», которые, будучи вставленными в магнитофон выдают очень специфический звук, чем-то сходный со звуком коннекта модема. Что до емкости, то на 90 минутную аудиокассету «влезало» около 0,5 – 1 МБ, а считывалась информация со скоростью около 10КБ/мин.
БК ZX-Spectrum в комплекте со «стримером»
Кроме того, в ZX-Спектрумах следующих лет использовались мини-картриджи ZX Microdrive. Их емкость составляла около 100КБ, а скорость 200-300 КБ/мин.
БК ZX-Spectrum в комплекте с микродрайвом
В качестве стримера может быть использован и видеомагнитофон. Многие помнят хиты прошлых лет – советские стримеры “АрВид”, представляющие собой ISA-платы с возможностью подключения к ним практически любого «видака». На 180-минутную видеокассету записывалось от 1-2 ГБ информации (первые АрВиды без сжатия) и до 10ГБ (в режиме SuperLongPlay) со скоростью 12-15МБ/мин. Преимуществом устройства была (вплоть до появления DVD-R) непревзойденно низкая стоимость хранения информации.
Стримерная плата АрВид-1052
Подобный вариант использования VHS видеокассет реализован в проекте Digital VHS. Результаты впечатляют: поток 1,6-2,6 МБ/сек, емкость носителя (180минутная видеокассета) -16-28 Гб.
Не так давно, в 2003 году, компания DV Streamer Ltd. выпустила программу DV Streamer PRO, которая позволяет записывать данные с ПК на ленту DV. То есть видеокамера DV превращается в стример. Вы можете записывать до 8,7 Гбайт данных на 60-минутную ленту. Максимально же (используя технологию LongPlay и отключив коррекцию ошибок) на кассету можно записать до 15ГБ информации.
Часть I Принципы работы и классификация ЗУ
Часть II.1 История ЗУ с последовательным доступом
Часть II.2 Современные ЗУ с последовательным доступом
Часть III.1 Жесткие диски (винчестеры)
Часть III.2 Интерфейсы жестких дисков
Часть IV. Устройства магнитной записи со съемным носителем (FDD, ZIP, JAZZ). Магнитооптические устройства.
Часть V. Оптические ЗУ (CD/DVD)
Часть VI. Флэш-память
Часть VII. ОЗУ и кэш-память
Часть VIII. Экзотические виды памяти. Перспективные разработки
pc.uz
Внешние устройства хранения информации — КиберПедия
Накопители на гибких магнитных дисках или дискеты. Дискеты служат для долговременного хранения программ и данных небольшого объема и удобны для перенесения информации с одного компьютера на другой. Дискеты различаются размером и объемом информации, который можно на них разместить. Различают 3,5″-дюймовые (рис. 5.16, а) и 5,25″-дюймовые дискеты (сейчас не используются, рис. 5.16, б). Их информационный объем составляет 1,44 Мб и 1,2 Мб соответственно. Для считывания информации с дискеты необходим специальное устройство — дисковод (рис. 5.17). Недостатки: невысокая надежность, малый информационный объем.
а) б)
Рис. 5.16. Дискеты: а) 3.5″1,44 Mb б) 5,25″ 1,2 Mb
Рис. 5.17. НГМД FDD 3.5″ NEC Silver
Накопитель на жестких магнитных дисках (от англ. HDD — Hard Disk Drive), или винчестер — это запоминающее устройство большой емкости, в котором носителями информации являются круглые жесткие пластины (иногда называемые также дисками), обе поверхности которых покрыты слоем магнитного материала (рис. 5.18). Винчестер используется для постоянного (длительного) хранения информации — программ и данных.
В принципе жесткие диски подобны дискетам. В них информация также записывается на магнитный слой диска. Однако этот диск, в отличие от дискет, сделан из жесткого материала, чаще всего алюминия (отсюда и название Hard Disk). В корпусе объединены такие элементы винчестера, как управляющий двигатель, носитель информации (диски), головки записи/считывания, позиционирующее устройство (позиционер) и микросхемы, обеспечивающие обработку данных, коррекцию возможных ошибок, управление механической частью, а также микросхемы кэш-памяти.
Если дискета физически состоит из одного диска, то винчестер состоит из нескольких одинаковых дисков, расположенных друг под другом.
НЖМД помещен в почти полностью герметизированный корпус. В отличие от НГМД, внутреннее устройство которого хорошо видно, НЖМД изолирован от внешней среды, что предотвращает попадание пыли и других частиц, которые могут повредить магнитный носитель или чувствительные головки чтения/записи, располагаемые над поверхностью быстро вращающегося диска на расстоянии нескольких десятимиллионных долей дюйма.
Магнитные диски являются элементами устройств чтения-записи информации — дисководов. Сам магнитный диск — это пластиковый (для гибких дисков) и алюминиевый либо керамический (для жестких дисков) круг с магниточувствительным покрытием. В случае жесткого диска таких кругов может быть несколько, и все они в центре посажены на один стержень. Для гибкого диска такой круг один, при помещении в дисковод он фиксируется в центре. Во время работы диск раскручивается.
Головки чтения-записи могут синхронно перемещаться в горизонтальном и вертикальном направлении (это показано стрелками), что позволяет им приблизиться к любой точке поверхности диска. Каждая точка поверхности рассматривается как отдельный бит внешней памяти.
Так же, как и основная память, поверхность диска (или дисков) имеет структуру. Элементы физической структуры следующие:
1) дорожка — концентрическая окружность, по которой движутся головки чтения-записи при размещении или поиске данных. Дорожки нумеруются, начиная с нуля. Нулевой номер имеет самая внешняя дорожка на диске;
2) секторы — блоки, в которых размещаются данные на дорожке при записи. Нумеруются начиная с единицы. Помимо пользовательской информации (самих данных), сектора содержат служебную информацию, например, собственный номер. Сектора являются минимальными адресуемыми элементами данных для диска;
3) стороны диска. Нумеруются, начиная с нуля. Для винчестера, расположенного вертикально, нулевой номер имеет самая верхняя сторона, для гибкого диска нулевой номер — у «лицевой» стороны дискеты;
4) цилиндр — совокупность дорожек с одинаковыми номерами на разных сторонах диска. Номера цилиндров совпадают с номерами дорожек
5) кластер — совокупность секторов, имеющих смежные номера. Может состоять из одного сектора (для дискет) или нескольких (для винчестера). Является минимальным адресуемым элементом данных для операционной системы. Кластер используются операционной системой для добавления данных к файлу: добавление очередной «порции» данных к файлу выполняется в объеме кластера независимо от того, что реальный объем добавляемых меньше объема кластера. Это приводит к нерациональному расходованию внешней памяти. Поэтому не рекомендуется хранить на диске большое количество маленьких файлов: они имеют много пустых «хвостов».
Разбивка непрерывного пространства поверхности диска указанные элементы (можно эту процедуру назвать дискретизацией) выполняется при его форматировании. При этом также формируются маркер начала и конца дорожки, места расположения секторов, в сектора записывается служебная информация.
Дискретное пространство диска имеет, в свою очередь, следующую структуру (она описана в порядке возрастания номеров сторон, дорожек и секторов):
1) таблица разделов РТ (Partition Table). Состоит из четырех элементов, описывающих разделы диска, причем операционные системы используют только первые два элемента. Описание раздела диска содержит данные о первых и последних головках чтения-записи, дорожках, секторах раздела, общем количестве секторов в разделе, типе файловой системы и признак того, что раздел является загрузочным;
2) главная загрузочная запись MBR (Master Boot Record). Содержит код процессора, необходимый для дальнейшей загрузки операционной системы;
3) загрузочная запись операционной системы BR (Boot Record). Содержит следующую информацию: программу загрузки операционной системы, размер кластера, количество копий FAT, количество файлов в корневом каталоге Root, размер FAT и некоторую другую информацию;
4) таблица размещения файлов FAT (File Allocation Table) и ее копии. Содержит полную карту принадлежности кластеров файлам и используется операционными системами для хранения сведений о размещении файлов на диске и о «плохих» (bad) кластерах. В силу важности FAT она дублируется несколько раз;
5) корневой каталог Root. Это таблица, в которой каждая запись соответствует файлу или подкаталогу, подчиненному корневому каталогу диска, и имеет структуру:
· имя файла или подкаталога;
· тип файла;
· атрибуты, в которых определяются следующие параметры файла или подкаталога: предназначенность только для чтения, скрытость, системность, маркер принадлежности данной записи метке тома, признак принадлежности данной записи подкаталогу, а не файлу, архивность;
· время создания;
· дата создания;
· номер начального кластера файла или подкаталога;
· размер файла.
Следует подчеркнуть, что записи для файлов и подкаталогов идентичны, за исключением двух характеристик: в поле атрибутов выставлен признак подкаталога, а в поле размеров выставлен ноль;
6) область размещения файлов FA (File Area). Содержит файлы и подкаталоги, которые описаны в Root.
К основным характеристиками винчестеров относят:
информационный объем — до 300 Гбайт;
число пластин (дисков) — от 1 до 3 шт.;
количество головок — 2, 4, 6 шт.;
скорость вращения дисков — скорость, с которой пластины диска вращаются относительно магнитных головок (измеряется в оборотах в минуту). У современных моделей этот показатель обычно составляет 7200 об./мин;
время доступа — 7-9 мс;
скорость чтения и записи информации — 75 Мбайт/с и более;
размер кэш-памяти — в среднем 4-8 Мбайт.
Винчестерский накопитель связан с процессором через контроллер жесткого диска.
Реальная производительность жестких дисков всегда определяется интерфейсом. На сегодняшний день в компьютерах могут быть интерфейсы параллельного (IDE и SCSI) и последовательного типов (USB и FireWire), используемые в основном при подключении внешних дисков. Винчестеры, подключаемые при помощи интерфейсов SCSI, USB и FireWire имеют гораздо более высокие характеристики, чем IDE.
Винчестер (как один физический диск) может быть разделен на несколько логических дисков (разделов). Каждый из них обозначается одной буквой латинского алфавита, начиная с С:, и может иметь свою метку (название). Кроме того, каждый логический диск имеет файловые системы (FAT, FAT32, NTFS).
Накопители на лазерных оптических дисках. Запись и считывание информации в оптических накопителях производится бесконтактно с помощью лазерного луча. К таким устройствам относятся, прежде всего, накопители CD-ROM, CD-R, CD-RW и DVD (ROM, R и RW).
Устройства CD-ROM (рис. 5.19). В устройствах CD-ROM (Compact Disk Read-Only Memory — компакт-диск только для чтения) носителем информации является оптический диск (компакт-диск), изготавливаемый на поточном производстве с помощью штамповочных машин и предназначенный только для чтения. Компакт-диск представляет собой прозрачный полимерный диск диаметром 12 см и толщиной 1,2 мм, на одну сторону которого напылен светоотражающий слой алюминия, защищенный от повреждений слоем прозрачного лака. Толщина напыления составляет несколько десятитысячных долей миллиметра.
Информация на диске представляется в виде последовательности впадин и выступов (их уровень соответствует поверхности диска), расположенных на спиральной дорожке, выходящей из области вблизи оси диска (на поверхности жесткого диска на дюйме по радиусу помещается лишь несколько сотен дорожек). Емкость такого CD достигает 780 Мбайт, что позволяет создавать на его основе справочные системы и учебные комплексы с большой иллюстративной базой. Один CD пo информационной емкости равен почти 500 дискетам. Считывание информации с CD-ROM происходит с достаточно высокой скоростью, хотя и заметно меньшей, чем скорость работы накопителей на жестком диске.
Накопители CD-R (CD-Recordable). Они позволяют наряду с прочтением обычных компакт-дисков однократно записывать информацию на специальные оптические диски CD-R. Информационный объем таких дисков составляет 700 Мбайт.
Запись на такие диски осуществляется благодаря наличию на них особого светочувствительного слоя из органического материала, темнеющего при нагревании. В процессе записи лазерный луч нагревает выбранные точки слоя, которые темнеют и перестают пропускать свет к отражающему слою, образуя участки, аналогичные впадинам.
Запись информации на диски CD-R представляет собой дешевый и оперативный способ хранения больших объемов данных.
Накопители CD-RW (CD-ReWritable). Дают возможность делать многократную запись на диск. Информационный объем таких дисков составляет 700 Мбайт.
Для того чтобы прочитать или записать информацию на один из трех выше перечисленных CD-дисков, необходим соответствующий CD-дисковод.
Дисковод CD-ROM — позволяет только считывать информацию с любых CD-дисков. Соответственно между собой такие устройства будут различаться скоростью чтения и кэш-памятью. Дисковод CD-R — прочитать и записать, а дисковод CD-RW не только читает, но и перезаписывает (стирает информацию и записывает поверх нее новую). Такие дисководы различаются скоростью чтения/записи/перезаписи (последнее только для CD-RW) и размером кэш.
Накопители DVD (Digital Versatile Disk, цифровой диск общего назначения). Первые DVD-диски появились на рынке где-то в 96-97-х годах прошлого века. DVD является прекрасным носителем для данных любого типа и используется как обыкновенный компьютерный носитель информации. Снаружи DVD выглядит как обычный CD, и даже при ближайшем рассмотрении тяжело заметить разницу. Однако возможностей у DVD гораздо больше. Диски DVD могут хранить в 26 раз больше данных по сравнению CD-ROM.
Технология DVD стала огромным скачком в области носителей информации. Стандартный односторонний однослойный диск может хранить 4,7 Гбайт данных. Но DVD могут изготавливаться по двухслойному стандарту, который позволяет увеличить количество хранимых на одной стороне данных до 8,5 Гбайт.
Кроме этого, диски DVD бывают двухсторонними, что увеличивает емкость диска до 17 Гбайт. Правда, чтобы считать DVD-диск, необходимо новое устройство (DVD-ROM), но технология DVD совместима с технологией CD, и привод DVD-ROМ читает и диски CD-диск, причем разных форматов.
В продаже можно встретить различные комбинированные дисководы для оптических дисков. Например, DVD-CD R/RW позволяет читать DVD и CD-диски и производить запись/перезапись на CD-диски. Другой вариант — DVD-RW — CD-RW. Позволяет читать, записывать и перезаписывать DVD и CD-диски.
Накопители Blu-ray Disk (от англ. blue ray — голубой луч и disk — диск) — формат оптического носителя, используемый для записи и хранения цифровых данных, включая видео высокой четкости с повышенной плотностью. Стандарт Blu-ray был совместно разработан консорциум BDA. В технологии Blu-ray для чтения и записи используется сине-фиолетовый лазер с длиной волны 405 нм. Обычные DVD и CD используют красный и инфракрасный лазеры с длиной волны 650 нм и
780 нм соответственно. Такое уменьшение позволило сузить дорожку вдвое по сравнению с обычным DVD-диском — до 0,32 микрон — и увеличить плотность записи данных.
Однослойный диск Blu-ray (BD) может хранить 23,3, 25, 27 или
33 Гбайт, двухслойный диск может вместить 46,6, 50, или 54 Гбайт. Также в разработке находятся диски вместимостью 100 Гбайт и 200 Гбайт с использованием соответственно четырех и шести слоев. Корпорация TDK уже анонсировала прототип четырехслойного диска объемом 100 Гбайт.
Накопители HD DVD (англ. High Definition DVD — DVD высокой четкости) — технология записи оптических дисков, выработанная консорциумом DVD Forum и компанией Toshiba. HD DVD (как и Blu-ray Disc) использует диски стандартного размера (120 миллиметров в диаметре) и синий лазер с длиной волны 405 нанометров.
Однослойный диск HD DVD имеет емкость 15 Гбайт, двухслойный — 30 Гбайт. Toshiba также анонсировала трехслойный диск, который может хранить до 45 Гбайт данных. Это меньше, чем емкость основного соперника Blu-ray, который поддерживает 25 Гбайт на один слой и
100 Гбайт на четыре слоя. Оба формата обратно совместимы с DVD и оба используют одни и те же методики сжатия видео: MPEG-2, Video Codec 1 (VC1, базируется на формате Windows Media 9) и H.264/MPEG-4 AVC.
Противостояние двух форматов HD DVD и Blu-ray, неофициально названное «война форматов» разрешилась в пользу последнего. 19 февраля 2008 года компания Toshiba объявила о прекращении поддержки технологии HD DVD в связи с решением положить конец войне форматов. Важным аргументом в этом споре выступило то, что ряд голливудских киностудий и, в частности, Warner Bros отказалась от формата HD DVD в пользу Blu-ray.
Сменные носители информации (флэш-карты).Флеш-память (англ. Flash-Memory) — разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти (рис. 5.20). Название этот тип памяти получил от одного из разработчиков технологии. Слово «флэш» — «вспышка» — относилось к типу записи информации и, вероятно, носило еще и рекламный характер.
Флеш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками. В традиционных устройствах с одноуровневыми ячейками (single-level cell, SLC), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (multi-level cell, MLC) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.
Преимущества флэш-памяти заключаются в независимости от наличия или отсутствия электрического питания, в долговременности хранения информации (производители гарантируют сохранность данных в течение 10 лет, но на практике должно быть больше) и в высокой механической надежности (в накопителях на базе флэш-памяти нет никаких механических устройств, следовательно, нечему ломаться).
Недостатки — в высокой сложности устройства, в невысоком быстродействии и в относительно высокой стоимости микросхем.
В настоящее время на основе флэш-памяти выпускается широкий ассортимент флэш-карт разных типов: SD, MMC, CompactFlash Type I и II, Memory Stick, Memory Stick Duo, TransFlash, miniSD, microSD, RS-MMC, SmartMedia, MiniDisk и др. (рис. 5.21). Основная битва производителей флэш-карт развернулась на двух фронтах: уменьшение размеров и увеличение быстродействия. Уже сейчас скорость работы карт сравнима с накопителями на оптических дисках, но от современных винчестеров отстает, весьма заметно.
Стримеры — это накопители на магнитной ленте с последовательным доступом к данным, по принципу действия — обычный магнитофон (рис. 5.22). Их отличает сравнительно низкая цена. Емкость магнитных кассет (картриджей) для стримеров составляет до нескольких Гбайт. Стримеры широко используют в системах разведки, безопасности, связи, навигации и в десятке других областей, где надо непрерывно записывать огромные массивы данных при безусловном обеспечении надежности хранения.
cyberpedia.su
Устройство хранения информации — это… Что такое Устройство хранения информации?
Electrically Erasable Programmable Read-Only Memory, англ. flash memory), отличающиеся высокой скоростью доступа и возможностью быстрого стирания данныхПо энергозависимости
Энергонезависимая память (англ. nonvolatile storage) — ЗУ, записи в которых не стираются при снятии электропитания. К этому типу памяти относятся все виды ПЗУ и ППЗУ.
Энергозависимая память (англ. volatile storage) — ЗУ, записи в которых стираются при снятии электропитания. К этому типу памяти относится ОЗУ, кэш-память.
(англ. dynamic storage) — разновидность энергозависимой полупроводниковой памяти, в которой хранимая информация с течением времени разрушается, поэтому для сохранения записей необходимо производить их периодическое восстановление (регенерацию), которое выполняется под управлением специальных внешних схемных элементов.
(англ. static storage) — разновидность энергозависимой полупроводниковой памяти, которой для хранения информации достаточно сохранения питающего напряжения, а регенерация не требуется.
По виду физического носителя и принципа рЕМА
Некоторые виды памяти могут носить сразу два и более «родовых» наименования по принципу работы.
Акустическая память (англ. acoustic storage) — в качестве среды для записи и хранения данных используются замкнутые акустические линии задержки.
Голографическая память (англ. holographic storage) — в качестве среды для записи и хранения используется пространственная графическая информация, отображаемая в виде интерференционных структур.
Емкостная память (англ. capacitor storage) — вид ЗУ, использующий в качестве среды для записи и хранения данных элементы электрической цепи — конденсаторы.
Криогенная память (англ. cryogenic storage) — в качестве среды для записи и хранения данных используются материалы, обладающие сверхпроводимостью.
Лазерная память (англ. laser storage) — вид памяти, в котором запись и считывание данных производятся лучом лазера (CD-R/RW, DVD+R/RW, DVD-RAM).
Магнитная память (англ. magnetic storage) — вид памяти, использующий в качестве среды для записи и хранения данных магнитный материал. Наиболее широко использующимися устройствами реализации магнитной памяти в современных ЭВМ являются накопители на магнитных лентах (НМЛ), магнитных (жестких и гибких) дисках (НЖМД и НГМД). Некоторые разновидности имеют собственные наименования:
- Память на магнитной проволоке (англ. plated wire memory) — на ней строится автоматика авиационных «чёрных ящиков» благодаря высокой сохранности даже повреждённого носителя при аварийных ситуациях.
- Память на магнитной пленке (англ. thin-film memory), наносимой на некоторую подложку, например стеклянную.
- Ферритовая память (англ. core storage) — на ферритовых сердечниках, через которые пропущены тонкие медные проводники.
- Память на цилиндрических магнитных доменах — использует генерацию и управляемое перемещение в неподвижном магнитном материале областей намагниченности (доменов). Имеет последовательный доступ, энергонезависима. Долгое время сохраняла лидерство в плотности хранения информации среди энергонезависимых устройств.
- Магнитооптическая память (англ. magnetooptics storage) — вид памяти, использующий магнитный материал, запись данных на который возможна только при нагреве до температуры Кюри (порядка 1450 °C), осуществляемом в точке записи лучом лазера (объём записи на стандартные 3,5 и 5,25 дюймовые гибкие диски составляет при этом соответственно до 600 Мб и 1,3 Гб, существовали и MO диски меньшего объёма). В 2002 году компания Fujitsu выпустила магнитооптические накопители DynaMO 2300U2 и дискеты к ним (стандартный размер дискет — 3,5 дюйма) ёмкостью 2,3 Гбайт.
- Сегнетоэлектрическая память англ. Ferroelectric RAM) — статическая оперативная память с произвольным доступом, ячейки которой сохраняют информацию, используя сегнетоэлектрический эффект («ferroelectric» переводится «сегнетоэлектрик, сегнетоэлектрический», а не «ферромагнетик», как можно подумать). Ячейка памяти представляет собой две токопроводящие обкладки, и плёнку из сегнетоэлектрического материала. В центре сегнетоэлектрического кристалла имеется подвижный атом. Приложение электрического поля заставляет его перемещаться. В случае, если поле «пытается» переместить атом в положение, например, соответствующее логическому нулю, а он в нём уже находится, через сегнетоэлектрический конденсатор проходит меньший заряд, чем в случае переключения ячейки. На измерении проходящего через ячейку заряда и основано считывание. При этом процессе ячейки перезаписываются, и информация теряется(требуется регенерация). Исследованиями в этом направлении занимаются фирмы Hitachi совместно с Ramtron, Matsushita с фирмой Symetrix. По сравнению с флеш-памятью, ячейки FRAM практически не деградируют — гарантируется до 1010 циклов перезаписи.
Молекулярная память (англ. molecular storage) — вид памяти, использующей технологию атомной тунельной микроскопии, в соответствии с которой запись и считывание данных производится на молекулярном уровне. Носителями информации являются специальные виды плёнок. Головки, считывающие данные, сканируют поверхность плёнки. Их чувствительность позволяет определять наличие или отсутствие в молекулах отдельных атомов, на чём и основан принцип записи-считывания данных. В середине 1999 года эта технология была продемонстрирована компанией Nanochip. В основе архитектуры устройств записи-считывания лежит технология MARE (Molecular Array Read-Write Engine). Достигнуты следующие показатели по плотности упаковки: ~40 Гбит/см² в устройствах чтения/записи и 128 Гбит/см² в устройствах с однократной записью, что считается в 6 раз выше, чем у экспериментальных образцов, которые основаны на классической технологии магнитной записи, и более чем в 25 раз превосходит лучшие её образцы, находящиеся в серийном производстве. Однако текущие (2008 год) достижения в скорости записи и считывания информации таким способом не позволяют говорить о массовом применении этой технологии.
Полупроводниковая память (англ. semiconductor storage) — вид памяти, использующий в качестве средств записи и хранения данных микроэлектронные интегральные схемы (БИС и СБИС). Преимущественное применение этот вид памяти получил в ПЗУ и ОЗУ ЭВМ, поскольку он характеризуется высоким быстродействием. Сравнительно недавно объём памяти, реализуемой на одной твердотельной (полупроводниковой) плате, ограничивался единицами Мбайт. Однако в настоящее время (2008 год) технологические достижения позволяют говорить о массовом использовании памяти в единицы и десятки гигабайт, а также о применении полупроводниковой памяти в качестве внешних носителей.
- Исторически первыми были устройства, в которых состояние сохранялось в триггере — комбинации из двух и более транзисторов или, ранее, электронных ламп.
- В дальнейшем большей плотности хранения при большем быстродействии достигли устройства емкостной памяти.
Фазоинверсная память (англ. Phase Change Rewritable storage, PCR) — разновидность лазерной (дисковой) памяти, использующей свойства некоторых полимерных материалов в точке лазерного нагрева в зависимости от температуры изменять фазовое состояние вещества (в частности кристаллизоваться или плавиться с возвращением в исходное состояние), а вместе с ним — и характеристики отражения. Указанная технология позволяет создавать оптические диски (650 Мб) для многократной перезаписи данных. Разработкой данной технологии занимается ряд компаний, включая Panasonic и Toshiba. Дальнейшее развитие этих принципов привело к развитию DVD, Blue-Ray технологий.
Электростатическая память (англ. electrostatic storage) — вид памяти, в котором носителями данных являются накопленные заряды статического электричества на поверхности диэлектрика.
По назначению, организации памяти и-или доступа
Автономное ЗУ (англ. off-line storage) — вид памяти, не допускающий прямого доступа к ней со стороны центрального процессора: обращение к ней, а также управление ею производится вводом в систему специальных команд и через посредство оперативной памяти.
Адресуемая память (англ. addressed memory) — вид памяти, к которой может непосредственно обращаться центральный процессор.
Ассоциативное ЗУ, АЗУ (англ. associative memory, content-addressable memory, CAM) — вид памяти, в котором адресация осуществляется на основе содержания данных, а не их местоположения, чем обеспечивается ускорение поиска необходимых записей. С указанной целью поиск в ассоциативной памяти производится на основе определения содержания в той или иной её области (ячейке памяти) слова, словосочетания, символа и т. п., являющихся поисковым признаком.
Существуют различные методы реализации АЗУ, в том числе использующие методы поиска основанные на «точном совпадении», «близком совпадении», «маскировании» слова-признака и т. д., а также различные процедуры реализации поиска, например, кэширования с целью производства «наилучшей оценки» истинного адреса, за которой следует проверка содержимого ячейки с вычисленным адресом. Некоторые ассоциативные ЗУ строятся по принципу последовательного, другие — параллельного сравнения признаков поиска (так называемые ортогональные ЗУ). Параллельные ассоциативные ЗУ нашли применение в организации кэш-памяти и виртуальной памяти. Ассоциативные ЗУ, потенциально, являются базой для построения высокоэффективных Лисп-процессоров и систем.
Буферное ЗУ (англ. buffer storage) — вид ЗУ, предназначенный для временного хранения данных при обмене ими между различными устройствами ЭВМ
Виртуальная память (англ. virtual memory):
- Способ организации памяти, в соответствии с которым часть внешней памяти ЭВМ используется для расширения её «внутренней» (основной, оперативной) памяти. Например, содержимое некоторой области, не используемой в данный момент времени «внутренней» памяти, хранится на жёстком диске и возвращается в оперативную память по мере необходимости.
- Область (пространство) памяти, предоставляемая отдельному пользователю или группе пользователей и состоящая из основной и внешней памяти ЭВМ, между которыми организован так называемый постраничный обмен данными. С указанной целью всё адресное пространство делится на страницы памяти. Поиск адресов страниц производится в ассоциативной памяти.
Временная память (англ. temporary storage) — специальное запоминающее устройство или часть оперативной памяти или внешней памяти, резервируемые для хранения промежуточных результатов обработки.
Вспомогательная память (англ. auxiliary storage) — часть памяти ЭВМ, охватывающая внешнюю и наращенную оперативную память.
Вторичная память (англ. secondary storage) — вид памяти, который в отличие от основной памяти имеет большее время доступа, основывается на блочном обмене, характеризуется большим объёмом и служит для разгрузки основной памяти.
Гибкая память (англ. elastic storage) — вид памяти, позволяющей хранить переменное число данных, пересылать (выдавать) их в той же последовательности, в которой принимает, и варьировать скорость вывода.
Дополнительная память (англ. add-in memory) — вид устройства памяти, предназначенного для увеличения объёма основной оперативной или внешней памяти на жёстком магнитном диске (ЖМД), входящих в основной комплект поставки ЭВМ.
Иерархическая память (англ. hierarchical storage) — вид памяти, имеющей иерархическую структуру, на верхнем уровне которой используется сверхоперативное запоминающее устройство, а на нижнем уровне — архивное ЗУ сверхбольшой ёмкости.
Кеш-память (англ. cache memory) — часть архитектуры устройства или программного обеспечения, осуществляющая хранение часто используемых данных для предоставления их в более быстрый доступ, нежели кешируемая память.
Коллективная память, память коллективного доступа (англ. shared memory):
- Память, доступная множеству пользователей, которые могут обращаться к ней одновременно или последовательно.
- Память, связанная одновременно с несколькими процессорами для обеспечения их взаимодействия при совместно решаемых ими задачах и использовании общих для них программных средств.
Корректирующая память (англ. patch memory) — часть памяти ЭВМ, предназначенная для хранения адресов неисправных ячеек основной памяти. Также используются термины «relocation table» и «remap table».
Локальная память (англ. local memory) — «внутренняя» память отдельного устройства ЭВМ (процессора, канала и т. п.), предназначенная для хранения управляющих этим устройством команд, а также сведений о состоянии устройства.
Магазинная (стековая) память (англ. pushdown storage) — вид памяти, являющийся аппаратной реализацией магазинного списка — стека, запись и считывание в котором осуществляются через одну и ту же ячейку — вершину стека. Это память абстрактного типа.
Матричная память (англ. matrix storage) — вид памяти, элементы (ячейки) которой имеют такое расположение, что доступ к ним осуществляется по двум или более координатам.
Многоблочная память (англ. multibunk memory) — вид оперативной памяти, организованной из нескольких независимых блоков, допускающих одновременное обращение к ним, что повышает её пропускную способность. Часто употребляется термин «интерлив» (калька с англ. interleave — перемежать) и может встречаться в документации некоторых фирм «многоканальная память» (англ. Multichanel).
Многовходовая память (англ. multiport storage memory) — устройство памяти, допускающее независимое обращение с нескольких направлений (входов), причём обслуживание запросов производится в порядке их приоритета.
Многоуровневая память (англ. multilevel memory) — организация памяти, состоящая из нескольких уровней запоминающих устройств с различными характеристиками и рассматриваемая со стороны пользователей как единое целое. Для многоуровневой памяти характерна страничная организация, обеспечивающая «прозрачность» обмена данными между ЗУ разных уровней.
Непосредственно управляемая (оперативно доступная) память (англ. on-line storage) — память, непосредственно доступная в данный момент времени центральному процессору.
Объектно-ориентированная память (англ. object storage) — память, система управления которой ориентирована на хранение объектов. При этом каждый объект характеризуется типом и размером записи.
Оверлейная память (англ. overlayable storage) — вид памяти с перекрытием вызываемых в разное время программных модулей.
Память параллельного действия (англ. parallel storage) — вид памяти, в которой все области поиска могут быть доступны одновременно.
Перезагружаемая управляющая память (англ. reloadable control storage) — вид памяти, предназначенный для хранения микропрограмм управления и допускающий многократную смену содержимого — автоматически или под управлением оператора ЭВМ.
Перемещаемая память (англ. data-carrier storage) — вид архивной памяти, в которой данные хранятся на перемещаемом носителе. Непосредственный доступ к ним от ЭВМ отсутствует.
Память последовательного действия (англ. sequential storage) — вид памяти, в которой данные записываются и выбираются последовательно — разряд за разрядом.
Память процессора, процессорная память (англ. processor storage) — память, являющаяся частью процессора и предназначенная для хранения данных, непосредственно участвующих в выполнении операций, реализуемых арифметико-логическим устройством и устройством управления.
Память со встроенной логикой, функциональная память (англ. logic-in-memory) — вид памяти, содержащий встроенные средства логической обработки (преобразования) данных, например их масштабирования, преобразования кодов, наложения полей и др.
Рабочая (промежуточная) память (англ. working (intermediate) storage):
- Часть памяти ЭВМ, предназначенная для размещения временных наборов данных.
- Память для временного хранения данных.
Реальная память (англ. real storage) — вся физическая память ЭВМ, включая основную и внешнюю память, доступная для центрального процессора и предназначенная для размещения программ и данных.
Регистровая память (англ. register storage) — вид памяти, состоящей из регистров общего назначения и регистров с плавающей запятой. Как правило, содержится целиком внутри процессора.
Свободная (доступная) память (англ. free space) — область или пространство памяти ЗУ, которая в данный момент может быть выделена для загрузки программы или записи данных.
Семантическая память (англ. semantic storage) — вид памяти, в которой данные размещаются и списываются в соответствии с некоторой структурой понятийных признаков.
Совместно используемая (разделяемая) память (англ. shareable storage) — вид памяти, допускающий одновременное использование его несколькими процессорами.
Память с защитой, защищённое ЗУ (англ. protected storage) — вид памяти, имеющий встроенные средства защиты от несанкционированного доступа к любой из его ячеек.
Память с последовательным доступом (англ. sequential access storage) — вид памяти, в которой последовательность обращённых к ним входных сообщений и выборок данных соответствует последовательности, в которой организованы их записи. Основной метод поиска данных в этом виде памяти — последовательный перебор записей.
Память с прямым доступом, ЗУ с произвольной выборкой (ЗУПВ) (англ. Random Access Memory, RAM) — вид памяти, в котором последовательность обращённых к ним входных сообщений и выборок данных не зависит от последовательности, в которой организованы их записи или их местоположения.
Память с пословной организацией (англ. word-organized memory) — вид памяти, в которой адресация, запись и выборка данных производится не побайтно, а пословно.
Статическая память (англ. static storage) — вид памяти, в котором положение данных и их значение не изменяются в процессе хранения и считывания. Разновидностью этого вида памяти является статическое ЗУПВ [static RAM].
Страничная память (англ. page memory) — память, разбитая на одинаковые области — страницы. Обмен с такой памятью осуществляется страницами.
Управляющая память (англ. control storage) — память, содержащая управляющие программы или микропрограммы. Обычно реализуется в виде ПЗУ.
Различные типы памяти обладают разными преимуществами, из-за чего в большинстве современных компьютеров используются сразу несколько типов устройств хранения данных.
Первичная и вторичная память
Первичная память характеризуется наибольшей скоростью доступа. Центральный процессор имеет прямой доступ к устройствам первичной памяти; иногда они даже размещаются на одном и том же кристалле.
В традиционной интерпретации первичная память содержит активно используемые данные (например, программы, работающие в настоящее время, а также данные, обрабатываемые в настоящее время). Обычно бывает высокоскоростная, относительно небольшая, энергозависимая (не всегда). Иногда её называют основной памятью.
Вторичная память также называется периферийной. В ней обычно хранится информация, не используемая в настоящее время. Доступ к такой памяти происходит медленнее, однако объёмы такой памяти могут быть в сотни и тысячи раз больше. В большинстве случаев энергонезависима.
Однако это разделение не всегда выполняется. В качестве основной памяти может использоваться диск с произвольным доступом, являющийся вторичным запоминающим устройством (ЗУ). А вторичной памятью иногда называются отключаемые или извлекаемые ЗУ, например, ленточные накопители.
Во многих КПК оперативная память и пространство размещения программ и данных находится физически в одной памяти, в общем адресном пространстве.
Произвольный и последовательный доступ
ЗУ с произвольным доступом отличаются возможностью передать любые данные в любом порядке. Оперативное запоминающее устройство, ОЗУ и винчестер — примеры такой памяти.
ЗУ с последовательным доступом, напротив, могут передавать данные только в определённой последовательности. Ленточная память и некоторые типы флеш-памяти имеют такой тип доступа.
Блочный и файловый доступ
На винчестере, используются 2 типа доступа. Блочный доступ предполагает, что вся память разделена на блоки одинаковых размеров с произвольным доступом. Файловый доступ использует абстракции — папки с файлами, в которых и хранятся данные. Другой способ адресации — ассоциативная использует алгоритм хеширования для определения адреса.
Типы запоминающих устройств
- Полупроводниковая:
См. также
Литература
- Память // Словарь компьютерных терминов = Dictionary of Personal Computing / Айен Синклер; Пер. с англ. А. Помогайбо — М.: Вече, АСТ, 1996. — С. 177, ISBN 5-7141-0309-2.
Ссылки
dic.academic.ru